Spaces:
Running
Running
MekkCyber
commited on
Commit
Β·
b5887d5
1
Parent(s):
931ff17
first
Browse files- .gradio/certificate.pem +31 -0
- app.py +414 -120
- requirements.txt +1 -1
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
app.py
CHANGED
|
@@ -2,16 +2,31 @@ import gradio as gr
|
|
| 2 |
import torch
|
| 3 |
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModel
|
| 4 |
import tempfile
|
| 5 |
-
from huggingface_hub import HfApi
|
| 6 |
from huggingface_hub import list_models
|
| 7 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 8 |
from packaging import version
|
| 9 |
import os
|
| 10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
MAP_QUANT_TYPE_TO_NAME = {
|
| 13 |
-
"int4_weight_only": "int4wo",
|
|
|
|
|
|
|
|
|
|
| 14 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
|
| 17 |
# ^ expect a gr.OAuthProfile object as input to get the user's profile
|
|
@@ -20,19 +35,29 @@ def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) ->
|
|
| 20 |
return "Hello !"
|
| 21 |
return f"Hello {profile.name} !"
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
"""Check if a model exists in the user's Hugging Face repository."""
|
| 25 |
try:
|
| 26 |
models = list_models(author=username, token=oauth_token.token)
|
| 27 |
model_names = [model.id for model in models]
|
| 28 |
-
if quantized_model_name
|
| 29 |
repo_name = f"{username}/{quantized_model_name}"
|
| 30 |
-
else
|
| 31 |
-
if
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
if repo_name in model_names:
|
| 37 |
return f"Model '{repo_name}' already exists in your repository."
|
| 38 |
else:
|
|
@@ -40,62 +65,160 @@ def check_model_exists(oauth_token: gr.OAuthToken | None, username, quantization
|
|
| 40 |
except Exception as e:
|
| 41 |
return f"Error checking model existence: {str(e)}"
|
| 42 |
|
|
|
|
| 43 |
def create_model_card(model_name, quantization_type, group_size):
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
base_model:
|
| 46 |
-
- {model_name}
|
| 47 |
-
---
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
# {model_name} (Quantized)
|
| 50 |
|
| 51 |
## Description
|
| 52 |
-
This model is a quantized version of the original model `{model_name}
|
|
|
|
|
|
|
| 53 |
|
| 54 |
## Quantization Details
|
| 55 |
- **Quantization Type**: {quantization_type}
|
| 56 |
-
- **Group Size**: {group_size
|
| 57 |
|
| 58 |
-
|
| 59 |
-
You can use this model in your applications by loading it directly from the Hugging Face Hub:
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
|
|
|
| 66 |
return model_card
|
| 67 |
|
| 68 |
-
def load_model(model_name, quantization_config, auth_token) :
|
| 69 |
-
return AutoModel.from_pretrained(model_name, torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="cpu", use_auth_token=auth_token.token)
|
| 70 |
-
|
| 71 |
-
def load_model_cpu(model_name, quantization_config, auth_token) :
|
| 72 |
-
return AutoModel.from_pretrained(model_name, torch_dtype=torch.bfloat16, quantization_config=quantization_config, use_auth_token=auth_token.token)
|
| 73 |
|
| 74 |
-
def quantize_model(
|
|
|
|
|
|
|
| 75 |
print(f"Quantizing model: {quantization_type}")
|
| 76 |
-
if
|
|
|
|
|
|
|
|
|
|
| 77 |
quantization_config = TorchAoConfig(quantization_type, group_size=group_size)
|
| 78 |
-
else
|
| 79 |
quantization_config = TorchAoConfig(quantization_type)
|
| 80 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
return model
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
print("Saving quantized model")
|
| 86 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
if quantized_model_name :
|
| 91 |
repo_name = f"{username}/{quantized_model_name}"
|
| 92 |
-
else
|
| 93 |
-
if
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
model_card = create_model_card(
|
| 99 |
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
|
| 100 |
f.write(model_card)
|
| 101 |
# Push to Hub
|
|
@@ -106,130 +229,301 @@ def save_model(model, model_name, quantization_type, group_size=128, username=No
|
|
| 106 |
repo_id=repo_name,
|
| 107 |
repo_type="model",
|
| 108 |
)
|
| 109 |
-
return f'<h1> π€ DONE</h1><br/>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a>'
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
if not profile:
|
| 115 |
-
return "
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
if not group_size.isdigit()
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
try:
|
| 127 |
-
quantized_model = quantize_model(
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
.gradio-container {overflow-y: auto;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
"""
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
gr.Markdown(
|
| 138 |
"""
|
| 139 |
-
# π€
|
| 140 |
|
| 141 |
Quantize your favorite Hugging Face models using TorchAO and save them to your profile!
|
|
|
|
|
|
|
| 142 |
"""
|
| 143 |
)
|
| 144 |
|
| 145 |
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
|
| 146 |
|
| 147 |
m1 = gr.Markdown()
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
radio = gr.Radio(["show", "hide"], label="Show Instructions", value="hide")
|
| 152 |
-
instructions = gr.Markdown(
|
| 153 |
-
"""
|
| 154 |
-
## Instructions
|
| 155 |
-
1. Login to your HuggingFace account
|
| 156 |
-
2. Enter the name of the Hugging Face LLM model you want to quantize (Make sure you have access to it)
|
| 157 |
-
3. Choose the quantization type.
|
| 158 |
-
4. Optionally, specify the group size.
|
| 159 |
-
5. Optionally, choose a custom name for the quantized model
|
| 160 |
-
6. Click "Quantize and Save Model" to start the process.
|
| 161 |
-
7. Once complete, you'll receive a link to the quantized model on Hugging Face.
|
| 162 |
-
|
| 163 |
-
Note: This process may take some time depending on the model size and your hardware you can check the container logs to see where are you at in the process!
|
| 164 |
-
""",
|
| 165 |
-
visible=False
|
| 166 |
-
)
|
| 167 |
-
def update_visibility(radio):
|
| 168 |
-
value = radio
|
| 169 |
-
if value == "show":
|
| 170 |
-
return gr.Textbox(visible=True)
|
| 171 |
-
else:
|
| 172 |
-
return gr.Textbox(visible=False)
|
| 173 |
-
radio.change(update_visibility, radio, instructions)
|
| 174 |
|
| 175 |
with gr.Row():
|
| 176 |
with gr.Column():
|
| 177 |
with gr.Row():
|
| 178 |
model_name = HuggingfaceHubSearch(
|
| 179 |
-
label="Hub Model ID",
|
| 180 |
placeholder="Search for model id on Huggingface",
|
| 181 |
search_type="model",
|
| 182 |
-
scale=2
|
| 183 |
)
|
|
|
|
|
|
|
| 184 |
with gr.Row():
|
| 185 |
with gr.Column():
|
| 186 |
quantization_type = gr.Dropdown(
|
| 187 |
-
info="Quantization
|
| 188 |
-
choices=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
value="int8_weight_only",
|
| 190 |
filterable=False,
|
| 191 |
show_label=False,
|
| 192 |
)
|
| 193 |
group_size = gr.Textbox(
|
| 194 |
-
info="Group Size (only for int4_weight_only)",
|
| 195 |
-
value=128,
|
| 196 |
interactive=True,
|
| 197 |
-
show_label=False
|
| 198 |
)
|
| 199 |
quantized_model_name = gr.Textbox(
|
| 200 |
-
info="
|
| 201 |
value="",
|
| 202 |
interactive=True,
|
| 203 |
-
show_label=False
|
| 204 |
)
|
|
|
|
| 205 |
with gr.Column():
|
| 206 |
-
quantize_button = gr.Button(
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
quantize_button.click(
|
| 228 |
fn=quantize_and_save,
|
| 229 |
inputs=[model_name, quantization_type, group_size, quantized_model_name],
|
| 230 |
-
outputs=[output_link]
|
| 231 |
)
|
| 232 |
|
| 233 |
-
|
| 234 |
# Launch the app
|
| 235 |
-
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import TorchAoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModel
|
| 4 |
import tempfile
|
| 5 |
+
from huggingface_hub import HfApi, snapshot_download
|
| 6 |
from huggingface_hub import list_models
|
| 7 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
| 8 |
from packaging import version
|
| 9 |
import os
|
| 10 |
+
from torchao.quantization import (
|
| 11 |
+
Int4WeightOnlyConfig,
|
| 12 |
+
Int8WeightOnlyConfig,
|
| 13 |
+
Int8DynamicActivationInt8WeightConfig,
|
| 14 |
+
Float8WeightOnlyConfig,
|
| 15 |
+
)
|
| 16 |
|
| 17 |
MAP_QUANT_TYPE_TO_NAME = {
|
| 18 |
+
"int4_weight_only": "int4wo",
|
| 19 |
+
"int8_weight_only": "int8wo",
|
| 20 |
+
"int8_dynamic_activation_int8_weight": "int8da8w",
|
| 21 |
+
"autoquant": "autoquant",
|
| 22 |
}
|
| 23 |
+
MAP_QUANT_TYPE_TO_CONFIG = {
|
| 24 |
+
"int4_weight_only": Int4WeightOnlyConfig,
|
| 25 |
+
"int8_weight_only": Int8WeightOnlyConfig,
|
| 26 |
+
"int8_dynamic_activation_int8_weight": Int8DynamicActivationInt8WeightConfig,
|
| 27 |
+
"float8_weight_only": Float8WeightOnlyConfig,
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
|
| 31 |
def hello(profile: gr.OAuthProfile | None, oauth_token: gr.OAuthToken | None) -> str:
|
| 32 |
# ^ expect a gr.OAuthProfile object as input to get the user's profile
|
|
|
|
| 35 |
return "Hello !"
|
| 36 |
return f"Hello {profile.name} !"
|
| 37 |
|
| 38 |
+
|
| 39 |
+
def check_model_exists(
|
| 40 |
+
oauth_token: gr.OAuthToken | None,
|
| 41 |
+
username,
|
| 42 |
+
quantization_type,
|
| 43 |
+
group_size,
|
| 44 |
+
model_name,
|
| 45 |
+
quantized_model_name,
|
| 46 |
+
):
|
| 47 |
"""Check if a model exists in the user's Hugging Face repository."""
|
| 48 |
try:
|
| 49 |
models = list_models(author=username, token=oauth_token.token)
|
| 50 |
model_names = [model.id for model in models]
|
| 51 |
+
if quantized_model_name:
|
| 52 |
repo_name = f"{username}/{quantized_model_name}"
|
| 53 |
+
else:
|
| 54 |
+
if (
|
| 55 |
+
quantization_type == "int4_weight_only"
|
| 56 |
+
or quantization_type == "int8_weight_only"
|
| 57 |
+
) and (group_size is not None):
|
| 58 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}"
|
| 59 |
+
else:
|
| 60 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}"
|
| 61 |
if repo_name in model_names:
|
| 62 |
return f"Model '{repo_name}' already exists in your repository."
|
| 63 |
else:
|
|
|
|
| 65 |
except Exception as e:
|
| 66 |
return f"Error checking model existence: {str(e)}"
|
| 67 |
|
| 68 |
+
|
| 69 |
def create_model_card(model_name, quantization_type, group_size):
|
| 70 |
+
# Try to download the original README
|
| 71 |
+
original_readme = ""
|
| 72 |
+
original_yaml_header = ""
|
| 73 |
+
try:
|
| 74 |
+
# Download the README.md file from the original model
|
| 75 |
+
model_path = snapshot_download(
|
| 76 |
+
repo_id=model_name, allow_patterns=["README.md"], repo_type="model"
|
| 77 |
+
)
|
| 78 |
+
readme_path = os.path.join(model_path, "README.md")
|
| 79 |
+
|
| 80 |
+
if os.path.exists(readme_path):
|
| 81 |
+
with open(readme_path, "r", encoding="utf-8") as f:
|
| 82 |
+
content = f.read()
|
| 83 |
+
|
| 84 |
+
if content.startswith("---"):
|
| 85 |
+
parts = content.split("---", 2)
|
| 86 |
+
if len(parts) >= 3:
|
| 87 |
+
original_yaml_header = parts[1]
|
| 88 |
+
original_readme = "---".join(parts[2:])
|
| 89 |
+
else:
|
| 90 |
+
original_readme = content
|
| 91 |
+
else:
|
| 92 |
+
original_readme = content
|
| 93 |
+
except Exception as e:
|
| 94 |
+
print(f"Error reading original README: {str(e)}")
|
| 95 |
+
original_readme = ""
|
| 96 |
+
|
| 97 |
+
# Create new YAML header with base_model field
|
| 98 |
+
yaml_header = f"""---
|
| 99 |
base_model:
|
| 100 |
+
- {model_name}"""
|
|
|
|
| 101 |
|
| 102 |
+
# Add any original YAML fields except base_model
|
| 103 |
+
if original_yaml_header:
|
| 104 |
+
in_base_model_section = False
|
| 105 |
+
found_tags = False
|
| 106 |
+
for line in original_yaml_header.strip().split("\n"):
|
| 107 |
+
# Skip if we're in a base_model section that continues to the next line
|
| 108 |
+
if in_base_model_section:
|
| 109 |
+
if (
|
| 110 |
+
line.strip().startswith("-")
|
| 111 |
+
or not line.strip()
|
| 112 |
+
or line.startswith(" ")
|
| 113 |
+
):
|
| 114 |
+
continue
|
| 115 |
+
else:
|
| 116 |
+
in_base_model_section = False
|
| 117 |
+
|
| 118 |
+
# Check for base_model field
|
| 119 |
+
if line.strip().startswith("base_model:"):
|
| 120 |
+
in_base_model_section = True
|
| 121 |
+
# If base_model has inline value (like "base_model: model_name")
|
| 122 |
+
if ":" in line and len(line.split(":", 1)[1].strip()) > 0:
|
| 123 |
+
in_base_model_section = False
|
| 124 |
+
continue
|
| 125 |
+
|
| 126 |
+
# Check for tags field and add bnb-my-repo
|
| 127 |
+
if line.strip().startswith("tags:"):
|
| 128 |
+
found_tags = True
|
| 129 |
+
yaml_header += f"\n{line}"
|
| 130 |
+
yaml_header += "\n- torchao-my-repo"
|
| 131 |
+
continue
|
| 132 |
+
|
| 133 |
+
yaml_header += f"\n{line}"
|
| 134 |
+
|
| 135 |
+
# If tags field wasn't found, add it
|
| 136 |
+
if not found_tags:
|
| 137 |
+
yaml_header += "\ntags:"
|
| 138 |
+
yaml_header += "\n- torchao-my-repo"
|
| 139 |
+
# Complete the YAML header
|
| 140 |
+
yaml_header += "\n---"
|
| 141 |
+
|
| 142 |
+
# Create the quantization info section
|
| 143 |
+
quant_info = f"""
|
| 144 |
# {model_name} (Quantized)
|
| 145 |
|
| 146 |
## Description
|
| 147 |
+
This model is a quantized version of the original model [`{model_name}`](https://huggingface.co/{model_name}).
|
| 148 |
+
|
| 149 |
+
It's quantized using the TorchAO library using the [torchao-my-repo](https://huggingface.co/spaces/pytorch/torchao-my-repo) space.
|
| 150 |
|
| 151 |
## Quantization Details
|
| 152 |
- **Quantization Type**: {quantization_type}
|
| 153 |
+
- **Group Size**: {group_size}
|
| 154 |
|
| 155 |
+
"""
|
|
|
|
| 156 |
|
| 157 |
+
# Combine everything
|
| 158 |
+
model_card = yaml_header + quant_info
|
| 159 |
|
| 160 |
+
# Append original README content if available
|
| 161 |
+
if original_readme and not original_readme.isspace():
|
| 162 |
+
model_card += "\n\n# π Original Model Information\n\n" + original_readme
|
| 163 |
return model_card
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
+
def quantize_model(
|
| 167 |
+
model_name, quantization_type, group_size=128, auth_token=None, username=None
|
| 168 |
+
):
|
| 169 |
print(f"Quantizing model: {quantization_type}")
|
| 170 |
+
if (
|
| 171 |
+
quantization_type == "int4_weight_only"
|
| 172 |
+
or quantization_type == "int8_weight_only"
|
| 173 |
+
):
|
| 174 |
quantization_config = TorchAoConfig(quantization_type, group_size=group_size)
|
| 175 |
+
else:
|
| 176 |
quantization_config = TorchAoConfig(quantization_type)
|
| 177 |
+
model = AutoModel.from_pretrained(
|
| 178 |
+
model_name,
|
| 179 |
+
torch_dtype="auto",
|
| 180 |
+
quantization_config=quantization_config,
|
| 181 |
+
device_map="cpu",
|
| 182 |
+
use_auth_token=auth_token.token,
|
| 183 |
+
)
|
| 184 |
|
| 185 |
return model
|
| 186 |
|
| 187 |
+
|
| 188 |
+
def save_model(
|
| 189 |
+
model,
|
| 190 |
+
model_name,
|
| 191 |
+
quantization_type,
|
| 192 |
+
group_size=128,
|
| 193 |
+
username=None,
|
| 194 |
+
auth_token=None,
|
| 195 |
+
quantized_model_name=None,
|
| 196 |
+
):
|
| 197 |
print("Saving quantized model")
|
| 198 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
| 199 |
+
# Load and save the tokenizer
|
| 200 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 201 |
+
model_name, use_auth_token=auth_token.token
|
| 202 |
+
)
|
| 203 |
+
tokenizer.save_pretrained(tmpdirname, use_auth_token=auth_token.token)
|
| 204 |
|
| 205 |
+
# Save the model
|
| 206 |
+
model.save_pretrained(
|
| 207 |
+
tmpdirname, safe_serialization=False, use_auth_token=auth_token.token
|
| 208 |
+
)
|
| 209 |
|
| 210 |
+
if quantized_model_name:
|
|
|
|
| 211 |
repo_name = f"{username}/{quantized_model_name}"
|
| 212 |
+
else:
|
| 213 |
+
if (
|
| 214 |
+
quantization_type == "int4_weight_only"
|
| 215 |
+
or quantization_type == "int8_weight_only"
|
| 216 |
+
) and (group_size is not None):
|
| 217 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}-gs{group_size}"
|
| 218 |
+
else:
|
| 219 |
+
repo_name = f"{username}/{model_name.split('/')[-1]}-ao-{MAP_QUANT_TYPE_TO_NAME[quantization_type.lower()]}"
|
| 220 |
|
| 221 |
+
model_card = create_model_card(model_name, quantization_type, group_size)
|
| 222 |
with open(os.path.join(tmpdirname, "README.md"), "w") as f:
|
| 223 |
f.write(model_card)
|
| 224 |
# Push to Hub
|
|
|
|
| 229 |
repo_id=repo_name,
|
| 230 |
repo_type="model",
|
| 231 |
)
|
|
|
|
| 232 |
|
| 233 |
+
import io
|
| 234 |
+
from contextlib import redirect_stdout
|
| 235 |
+
import html
|
| 236 |
+
|
| 237 |
+
# Capture the model architecture string
|
| 238 |
+
f = io.StringIO()
|
| 239 |
+
with redirect_stdout(f):
|
| 240 |
+
print(model)
|
| 241 |
+
model_architecture_str = f.getvalue()
|
| 242 |
+
|
| 243 |
+
# Escape HTML characters and format with line breaks
|
| 244 |
+
model_architecture_str_html = html.escape(model_architecture_str).replace(
|
| 245 |
+
"\n", "<br/>"
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Format it for display in markdown with proper styling
|
| 249 |
+
model_architecture_info = f"""
|
| 250 |
+
<div class="model-architecture-container" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
|
| 251 |
+
<h3 style="margin-top: 0; color: #2E7D32;">π Model Architecture</h3>
|
| 252 |
+
<div class="model-architecture" style="max-height: 500px; overflow-y: auto; overflow-x: auto; background-color: #f5f5f5; padding: 5px; border-radius: 8px; font-family: monospace; white-space: pre-wrap;">
|
| 253 |
+
<div style="line-height: 1.2; font-size: 0.75em;">{model_architecture_str_html}</div>
|
| 254 |
+
</div>
|
| 255 |
+
</div>
|
| 256 |
+
"""
|
| 257 |
+
|
| 258 |
+
repo_link = f"""
|
| 259 |
+
<div class="repo-link" style="margin-top: 20px; margin-bottom: 20px; background-color: #f8f9fa; padding: 15px; border-radius: 8px; border-left: 4px solid #4CAF50;">
|
| 260 |
+
<h3 style="margin-top: 0; color: #2E7D32;">π Repository Link</h3>
|
| 261 |
+
<p>Find your repo here: <a href="https://huggingface.co/{repo_name}" target="_blank" style="text-decoration:underline">{repo_name}</a></p>
|
| 262 |
+
</div>
|
| 263 |
+
"""
|
| 264 |
+
return (
|
| 265 |
+
f"<h1>π Quantization Completed</h1><br/>{repo_link}{model_architecture_info}"
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def quantize_and_save(
|
| 270 |
+
profile: gr.OAuthProfile | None,
|
| 271 |
+
oauth_token: gr.OAuthToken | None,
|
| 272 |
+
model_name,
|
| 273 |
+
quantization_type,
|
| 274 |
+
group_size,
|
| 275 |
+
quantized_model_name,
|
| 276 |
+
):
|
| 277 |
+
if oauth_token is None:
|
| 278 |
+
return """
|
| 279 |
+
<div class="error-box">
|
| 280 |
+
<h3>β Authentication Error</h3>
|
| 281 |
+
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
|
| 282 |
+
</div>
|
| 283 |
+
"""
|
| 284 |
if not profile:
|
| 285 |
+
return """
|
| 286 |
+
<div class="error-box">
|
| 287 |
+
<h3>β Authentication Error</h3>
|
| 288 |
+
<p>Please sign in to your HuggingFace account to use the quantizer.</p>
|
| 289 |
+
</div>
|
| 290 |
+
"""
|
| 291 |
+
if not group_size.isdigit():
|
| 292 |
+
if group_size != "":
|
| 293 |
+
return """
|
| 294 |
+
<div class="error-box">
|
| 295 |
+
<h3>β Group Size Error</h3>
|
| 296 |
+
<p>Group Size is a number for int4_weight_only and int8_weight_only or empty for int8_weight_only</p>
|
| 297 |
+
</div>
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
if group_size and group_size.strip():
|
| 301 |
+
group_size = int(group_size)
|
| 302 |
+
else:
|
| 303 |
+
group_size = None
|
| 304 |
+
|
| 305 |
+
exists_message = check_model_exists(
|
| 306 |
+
oauth_token,
|
| 307 |
+
profile.username,
|
| 308 |
+
quantization_type,
|
| 309 |
+
group_size,
|
| 310 |
+
model_name,
|
| 311 |
+
quantized_model_name,
|
| 312 |
+
)
|
| 313 |
+
if exists_message:
|
| 314 |
+
return f"""
|
| 315 |
+
<div class="warning-box">
|
| 316 |
+
<h3>β οΈ Model Already Exists</h3>
|
| 317 |
+
<p>{exists_message}</p>
|
| 318 |
+
</div>
|
| 319 |
+
"""
|
| 320 |
+
# if quantization_type == "int4_weight_only" :
|
| 321 |
+
# return "int4_weight_only not supported on cpu"
|
| 322 |
|
| 323 |
try:
|
| 324 |
+
quantized_model = quantize_model(
|
| 325 |
+
model_name, quantization_type, group_size, oauth_token, profile.username
|
| 326 |
+
)
|
| 327 |
+
return save_model(
|
| 328 |
+
quantized_model,
|
| 329 |
+
model_name,
|
| 330 |
+
quantization_type,
|
| 331 |
+
group_size,
|
| 332 |
+
profile.username,
|
| 333 |
+
oauth_token,
|
| 334 |
+
quantized_model_name,
|
| 335 |
+
)
|
| 336 |
+
except Exception as e:
|
| 337 |
+
return str(e)
|
| 338 |
|
| 339 |
|
| 340 |
+
def get_model_size(model):
|
| 341 |
+
"""
|
| 342 |
+
Calculate the size of a PyTorch model in gigabytes.
|
| 343 |
+
|
| 344 |
+
Args:
|
| 345 |
+
model: PyTorch model
|
| 346 |
+
|
| 347 |
+
Returns:
|
| 348 |
+
float: Size of the model in GB
|
| 349 |
+
"""
|
| 350 |
+
# Get model state dict
|
| 351 |
+
state_dict = model.state_dict()
|
| 352 |
+
|
| 353 |
+
# Calculate total size in bytes
|
| 354 |
+
total_size = 0
|
| 355 |
+
for param in state_dict.values():
|
| 356 |
+
# Calculate bytes for each parameter
|
| 357 |
+
total_size += param.nelement() * param.element_size()
|
| 358 |
+
|
| 359 |
+
# Convert bytes to gigabytes (1 GB = 1,073,741,824 bytes)
|
| 360 |
+
size_gb = total_size / (1024**3)
|
| 361 |
+
size_gb = round(size_gb, 2)
|
| 362 |
+
|
| 363 |
+
return size_gb
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
# Add enhanced CSS styling
|
| 367 |
+
css = """
|
| 368 |
+
/* Custom CSS for enhanced UI */
|
| 369 |
.gradio-container {overflow-y: auto;}
|
| 370 |
+
|
| 371 |
+
/* Fix alignment for radio buttons and dropdowns */
|
| 372 |
+
.gradio-radio, .gradio-dropdown {
|
| 373 |
+
display: flex !important;
|
| 374 |
+
align-items: center !important;
|
| 375 |
+
margin: 10px 0 !important;
|
| 376 |
+
}
|
| 377 |
+
|
| 378 |
+
/* Consistent spacing and alignment */
|
| 379 |
+
.gradio-dropdown, .gradio-textbox, .gradio-radio {
|
| 380 |
+
margin-bottom: 12px !important;
|
| 381 |
+
width: 100% !important;
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
/* Quantize button styling with glow effect */
|
| 385 |
+
button[variant="primary"] {
|
| 386 |
+
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
|
| 387 |
+
color: white !important;
|
| 388 |
+
padding: 16px 32px !important;
|
| 389 |
+
font-size: 1.1rem !important;
|
| 390 |
+
font-weight: 700 !important;
|
| 391 |
+
border: none !important;
|
| 392 |
+
border-radius: 12px !important;
|
| 393 |
+
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
|
| 394 |
+
transition: all 0.3s cubic-bezier(0.25, 0.8, 0.25, 1) !important;
|
| 395 |
+
position: relative;
|
| 396 |
+
overflow: hidden;
|
| 397 |
+
animation: glow 1.5s ease-in-out infinite alternate;
|
| 398 |
+
}
|
| 399 |
+
|
| 400 |
+
button[variant="primary"]::before {
|
| 401 |
+
content: "β¨ ";
|
| 402 |
+
}
|
| 403 |
+
|
| 404 |
+
button[variant="primary"]:hover {
|
| 405 |
+
transform: translateY(-5px) scale(1.05) !important;
|
| 406 |
+
box-shadow: 0 10px 25px rgba(59, 130, 246, 0.7) !important;
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
@keyframes glow {
|
| 410 |
+
from {
|
| 411 |
+
box-shadow: 0 0 10px rgba(59, 130, 246, 0.5);
|
| 412 |
+
}
|
| 413 |
+
to {
|
| 414 |
+
box-shadow: 0 0 20px rgba(59, 130, 246, 0.8), 0 0 30px rgba(16, 185, 129, 0.5);
|
| 415 |
+
}
|
| 416 |
+
}
|
| 417 |
+
|
| 418 |
+
/* Login button styling */
|
| 419 |
+
#login-button {
|
| 420 |
+
background: linear-gradient(135deg, #3B82F6, #10B981) !important;
|
| 421 |
+
color: white !important;
|
| 422 |
+
font-weight: 700 !important;
|
| 423 |
+
border: none !important;
|
| 424 |
+
border-radius: 12px !important;
|
| 425 |
+
box-shadow: 0 0 15px rgba(59, 130, 246, 0.5) !important;
|
| 426 |
+
transition: all 0.3s ease !important;
|
| 427 |
+
max-width: 300px !important;
|
| 428 |
+
margin: 0 auto !important;
|
| 429 |
+
}
|
| 430 |
"""
|
| 431 |
+
|
| 432 |
+
# Update the main app layout
|
| 433 |
+
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
|
| 434 |
gr.Markdown(
|
| 435 |
"""
|
| 436 |
+
# π€ TorchAO Model Quantizer β¨
|
| 437 |
|
| 438 |
Quantize your favorite Hugging Face models using TorchAO and save them to your profile!
|
| 439 |
+
|
| 440 |
+
<br/>
|
| 441 |
"""
|
| 442 |
)
|
| 443 |
|
| 444 |
gr.LoginButton(elem_id="login-button", elem_classes="center-button", min_width=250)
|
| 445 |
|
| 446 |
m1 = gr.Markdown()
|
| 447 |
+
demo.load(hello, inputs=None, outputs=m1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 448 |
|
| 449 |
with gr.Row():
|
| 450 |
with gr.Column():
|
| 451 |
with gr.Row():
|
| 452 |
model_name = HuggingfaceHubSearch(
|
| 453 |
+
label="π Hub Model ID",
|
| 454 |
placeholder="Search for model id on Huggingface",
|
| 455 |
search_type="model",
|
|
|
|
| 456 |
)
|
| 457 |
+
|
| 458 |
+
gr.Markdown("""### βοΈ Quantization Settings""")
|
| 459 |
with gr.Row():
|
| 460 |
with gr.Column():
|
| 461 |
quantization_type = gr.Dropdown(
|
| 462 |
+
info="Select the Quantization method",
|
| 463 |
+
choices=[
|
| 464 |
+
"int4_weight_only",
|
| 465 |
+
"int8_weight_only",
|
| 466 |
+
"int8_dynamic_activation_int8_weight",
|
| 467 |
+
"autoquant",
|
| 468 |
+
],
|
| 469 |
value="int8_weight_only",
|
| 470 |
filterable=False,
|
| 471 |
show_label=False,
|
| 472 |
)
|
| 473 |
group_size = gr.Textbox(
|
| 474 |
+
info="Group Size (only for int4_weight_only and int8_weight_only)",
|
| 475 |
+
value="128",
|
| 476 |
interactive=True,
|
| 477 |
+
show_label=False,
|
| 478 |
)
|
| 479 |
quantized_model_name = gr.Textbox(
|
| 480 |
+
info="Custom name for your quantized model (optional)",
|
| 481 |
value="",
|
| 482 |
interactive=True,
|
| 483 |
+
show_label=False,
|
| 484 |
)
|
| 485 |
+
|
| 486 |
with gr.Column():
|
| 487 |
+
quantize_button = gr.Button(
|
| 488 |
+
"π Quantize and Push to Hub", variant="primary"
|
| 489 |
+
)
|
| 490 |
+
output_link = gr.Markdown(
|
| 491 |
+
label="π Quantized Model Info", container=True, min_height=200
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
# Add information section
|
| 495 |
+
with gr.Accordion("π About TorchAO Quantization", open=True):
|
| 496 |
+
gr.Markdown(
|
| 497 |
+
"""
|
| 498 |
+
## π Quantization Options
|
| 499 |
+
|
| 500 |
+
### Quantization Types
|
| 501 |
+
- **int4_weight_only**: 4-bit weight-only quantization
|
| 502 |
+
- **int8_weight_only**: 8-bit weight-only quantization
|
| 503 |
+
- **int8_dynamic_activation_int8_weight**: 8-bit quantization for both weights and activations
|
| 504 |
+
|
| 505 |
+
### Group Size
|
| 506 |
+
- Only applicable for int4_weight_only and int8_weight_only quantization
|
| 507 |
+
- Default value is 128
|
| 508 |
+
- Affects the granularity of quantization
|
| 509 |
+
|
| 510 |
+
## π How It Works
|
| 511 |
+
1. Downloads the original model
|
| 512 |
+
2. Applies TorchAO quantization with your selected settings
|
| 513 |
+
3. Uploads the quantized model to your HuggingFace account
|
| 514 |
+
|
| 515 |
+
## π Memory Benefits
|
| 516 |
+
- int4_weight_only can reduce model size by up to 75%
|
| 517 |
+
- int8_weight_only typically reduces size by about 50%
|
| 518 |
+
"""
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
# Keep existing click handler
|
| 522 |
quantize_button.click(
|
| 523 |
fn=quantize_and_save,
|
| 524 |
inputs=[model_name, quantization_type, group_size, quantized_model_name],
|
| 525 |
+
outputs=[output_link],
|
| 526 |
)
|
| 527 |
|
|
|
|
| 528 |
# Launch the app
|
| 529 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
accelerate
|
| 3 |
torchao
|
| 4 |
huggingface-hub
|
|
|
|
| 1 |
+
transformers
|
| 2 |
accelerate
|
| 3 |
torchao
|
| 4 |
huggingface-hub
|