File size: 5,032 Bytes
9425c26
 
 
 
 
559d7ca
 
 
 
9425c26
 
5cc52e7
9425c26
 
 
 
 
 
 
5cc52e7
9425c26
 
 
 
 
 
 
 
 
 
 
5cc52e7
9425c26
559d7ca
9425c26
 
 
ee46e47
9425c26
 
 
 
 
 
 
 
ee46e47
9425c26
 
 
 
 
 
 
 
5cc52e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559d7ca
5cc52e7
 
559d7ca
5cc52e7
 
 
559d7ca
 
 
5cc52e7
 
 
 
 
9425c26
 
67f506d
9425c26
1bad840
5cc52e7
 
 
9425c26
 
 
 
 
 
 
ff3ab89
5f47548
 
9425c26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import tensorflow as tf
import cv2
import numpy as np
import gradio as gr
import math
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)

class ShopliftingPrediction:
    def __init__(self, model_path, frame_width, frame_height, sequence_length):
        self.frame_width = frame_width
        self.frame_height = frame_height
        self.sequence_length = sequence_length
        self.model_path = model_path
        self.message = ''

    def load_model(self):
        # Define custom objects for loading the model
        custom_objects = {
            'Conv2D': tf.keras.layers.Conv2D,
            'MaxPooling2D': tf.keras.layers.MaxPooling2D,
            'TimeDistributed': tf.keras.layers.TimeDistributed,
            'LSTM': tf.keras.layers.LSTM,
            'Dense': tf.keras.layers.Dense,
            'Flatten': tf.keras.layers.Flatten,
            'Dropout': tf.keras.layers.Dropout,
            'Orthogonal': tf.keras.initializers.Orthogonal,
        }

        # Load the model with custom objects
        self.model = tf.keras.models.load_model(self.model_path, custom_objects=custom_objects)
        logging.info("Model loaded successfully.")

    def generate_message_content(self, probability, label):
        if label == 0:
            if probability <=50:
                self.message = "No theft"
            elif probability <= 75:
                self.message = "There is little chance of theft"
            elif probability <= 85:
                self.message = "High probability of theft"
            else:
                self.message = "Very high probability of theft"
        elif label == 1:
            if probability <=50:
                self.message = "No theft"
            elif probability <= 75:
                self.message = "The movement is confusing, watch"
            elif probability <= 85:
                self.message = "I think it's normal, but it's better to watch"
            else:
                self.message = "Movement is normal"

    def Pre_Process_Video(self, current_frame, previous_frame):
        diff = cv2.absdiff(current_frame, previous_frame)
        diff = cv2.GaussianBlur(diff, (3, 3), 0)
        resized_frame = cv2.resize(diff, (self.frame_height, self.frame_width))
        gray_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
        normalized_frame = gray_frame / 255
        return normalized_frame

    def Read_Video(self, filePath):
        self.video_reader = cv2.VideoCapture(filePath)
        self.original_video_width = int(self.video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
        self.original_video_height = int(self.video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
        self.fps = self.video_reader.get(cv2.CAP_PROP_FPS)

    def Single_Frame_Predict(self, frames_queue):
        probabilities = self.model.predict(np.expand_dims(frames_queue, axis=0))[0]
        predicted_label = np.argmax(probabilities)
        probability = math.floor(max(probabilities[0], probabilities[1]) * 100)
        return [probability, predicted_label]

    def Predict_Video(self, video_file_path, output_file_path):
        self.load_model()
        self.Read_Video(video_file_path)
        video_writer = cv2.VideoWriter(output_file_path, cv2.VideoWriter_fourcc('M', 'P', '4', 'V'),
                                       self.fps, (self.original_video_width, self.original_video_height))
        success, frame = self.video_reader.read()
        previous = frame.copy()
        frames_queue = []
        
        while self.video_reader.isOpened():
            ok, frame = self.video_reader.read()
            if not ok:
                break
            normalized_frame = self.Pre_Process_Video(frame, previous)
            previous = frame.copy()
            frames_queue.append(normalized_frame)
            
            if len(frames_queue) == self.sequence_length:
                [probability, predicted_label] = self.Single_Frame_Predict(frames_queue)
                self.generate_message_content(probability, predicted_label)
                message = "{}:{}%".format(self.message, probability)
                frames_queue = []
                logging.info(message)
            
            cv2.rectangle(frame, (0, 0), (640, 40), (255, 255, 255), -1)
            cv2.putText(frame, self.message, (1, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)
            video_writer.write(frame)
        
        self.video_reader.release()
        video_writer.release()
        return output_file_path

def inference(model_path):
    shoplifting_prediction = ShopliftingPrediction(model_path, 90, 90, sequence_length=160)
    
    def process_video(video_path):
        output_file_path = '/tmp/output.mp4'
        return shoplifting_prediction.Predict_Video(video_path, output_file_path)
    
    return process_video

model_path = 'lrcn_160S_90_90Q.h5'
process_video = inference(model_path)

iface = gr.Interface(
    fn=process_video,
    inputs=gr.Video(),
    outputs="video",
    live=True,
)

iface.launch()