Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,172 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch(
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py - SmallLM Gradio Demo
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
|
8 |
+
# Global variables for model and tokenizer
|
9 |
+
model = None
|
10 |
+
tokenizer = None
|
|
|
11 |
|
12 |
+
def load_model():
|
13 |
+
"""Load the SmallLM model and tokenizer"""
|
14 |
+
global model, tokenizer
|
15 |
+
|
16 |
+
try:
|
17 |
+
print("Loading SmallLM model...")
|
18 |
+
model_name = "XsoraS/SmallLM"
|
19 |
+
|
20 |
+
# Load tokenizer
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
|
23 |
+
# Add padding token if it doesn't exist
|
24 |
+
if tokenizer.pad_token is None:
|
25 |
+
tokenizer.pad_token = tokenizer.eos_token
|
26 |
+
|
27 |
+
# Load model
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(
|
29 |
+
model_name,
|
30 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
31 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
32 |
+
trust_remote_code=True
|
33 |
+
)
|
34 |
+
|
35 |
+
print("Model loaded successfully!")
|
36 |
+
return "Model loaded successfully!"
|
37 |
+
|
38 |
+
except Exception as e:
|
39 |
+
error_msg = f"Error loading model: {str(e)}"
|
40 |
+
print(error_msg)
|
41 |
+
return error_msg
|
42 |
|
43 |
+
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
|
44 |
+
"""Generate text using the loaded model"""
|
45 |
+
global model, tokenizer
|
46 |
+
|
47 |
+
if model is None or tokenizer is None:
|
48 |
+
return "Please load the model first!"
|
49 |
+
|
50 |
+
try:
|
51 |
+
# Tokenize input
|
52 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
53 |
+
|
54 |
+
# Move to same device as model
|
55 |
+
if torch.cuda.is_available():
|
56 |
+
inputs = inputs.to(model.device)
|
57 |
+
|
58 |
+
# Generate
|
59 |
+
with torch.no_grad():
|
60 |
+
outputs = model.generate(
|
61 |
+
inputs,
|
62 |
+
max_length=max_length,
|
63 |
+
temperature=temperature,
|
64 |
+
top_p=top_p,
|
65 |
+
do_sample=True,
|
66 |
+
pad_token_id=tokenizer.eos_token_id,
|
67 |
+
num_return_sequences=1
|
68 |
+
)
|
69 |
+
|
70 |
+
# Decode output
|
71 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
72 |
+
|
73 |
+
# Return only the new generated part
|
74 |
+
return generated_text[len(prompt):].strip()
|
75 |
+
|
76 |
+
except Exception as e:
|
77 |
+
return f"Error generating text: {str(e)}"
|
78 |
|
79 |
+
def clear_text():
|
80 |
+
"""Clear the input and output"""
|
81 |
+
return "", ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Create Gradio interface
|
84 |
+
with gr.Blocks(title="SmallLM Demo", theme=gr.themes.Soft()) as demo:
|
85 |
+
gr.Markdown("# 🤖 SmallLM Inference Demo")
|
86 |
+
gr.Markdown("Simple demo for XsoraS/SmallLM text generation")
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
with gr.Column(scale=1):
|
90 |
+
load_btn = gr.Button("🔄 Load Model", variant="primary")
|
91 |
+
status = gr.Textbox(
|
92 |
+
label="Status",
|
93 |
+
value="Click 'Load Model' to start",
|
94 |
+
interactive=False
|
95 |
+
)
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
with gr.Column(scale=2):
|
99 |
+
prompt_input = gr.Textbox(
|
100 |
+
label="Enter your prompt:",
|
101 |
+
placeholder="Once upon a time...",
|
102 |
+
lines=3
|
103 |
+
)
|
104 |
+
|
105 |
+
with gr.Row():
|
106 |
+
max_length = gr.Slider(
|
107 |
+
label="Max Length",
|
108 |
+
minimum=10,
|
109 |
+
maximum=500,
|
110 |
+
value=100,
|
111 |
+
step=10
|
112 |
+
)
|
113 |
+
temperature = gr.Slider(
|
114 |
+
label="Temperature",
|
115 |
+
minimum=0.1,
|
116 |
+
maximum=2.0,
|
117 |
+
value=0.7,
|
118 |
+
step=0.1
|
119 |
+
)
|
120 |
+
top_p = gr.Slider(
|
121 |
+
label="Top P",
|
122 |
+
minimum=0.1,
|
123 |
+
maximum=1.0,
|
124 |
+
value=0.9,
|
125 |
+
step=0.05
|
126 |
+
)
|
127 |
+
|
128 |
+
with gr.Row():
|
129 |
+
generate_btn = gr.Button("✨ Generate", variant="primary")
|
130 |
+
clear_btn = gr.Button("🗑️ Clear")
|
131 |
+
|
132 |
+
with gr.Column(scale=2):
|
133 |
+
output = gr.Textbox(
|
134 |
+
label="Generated Text:",
|
135 |
+
lines=10,
|
136 |
+
interactive=False
|
137 |
+
)
|
138 |
+
|
139 |
+
# Event handlers
|
140 |
+
load_btn.click(
|
141 |
+
fn=load_model,
|
142 |
+
outputs=status
|
143 |
+
)
|
144 |
+
|
145 |
+
generate_btn.click(
|
146 |
+
fn=generate_text,
|
147 |
+
inputs=[prompt_input, max_length, temperature, top_p],
|
148 |
+
outputs=output
|
149 |
+
)
|
150 |
+
|
151 |
+
clear_btn.click(
|
152 |
+
fn=clear_text,
|
153 |
+
outputs=[prompt_input, output]
|
154 |
+
)
|
155 |
+
|
156 |
+
# Examples
|
157 |
+
gr.Examples(
|
158 |
+
examples=[
|
159 |
+
["The future of artificial intelligence is"],
|
160 |
+
["In a world where technology and nature coexist"],
|
161 |
+
["Write a short story about a robot who"],
|
162 |
+
["Explain quantum computing in simple terms:"],
|
163 |
+
],
|
164 |
+
inputs=prompt_input
|
165 |
+
)
|
166 |
|
167 |
if __name__ == "__main__":
|
168 |
+
demo.launch(
|
169 |
+
server_name="0.0.0.0",
|
170 |
+
server_port=7860,
|
171 |
+
share=True
|
172 |
+
)
|