Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,90 @@
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
-
from fastapi.responses import
|
3 |
-
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
import asyncio
|
7 |
-
import gradio as gr
|
8 |
|
9 |
-
# Initialisation FastAPI
|
10 |
app = FastAPI()
|
11 |
-
templates = Jinja2Templates(directory="templates")
|
12 |
|
13 |
-
# Chargement du modèle
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
28 |
-
|
29 |
-
|
30 |
-
outputs = model.generate(
|
31 |
-
**inputs,
|
32 |
-
max_new_tokens=1,
|
33 |
-
do_sample=True,
|
34 |
-
temperature=0.7,
|
35 |
-
top_p=0.9
|
36 |
-
)
|
37 |
-
new_token = tokenizer.decode(outputs[0][-1], skip_special_tokens=True)
|
38 |
-
yield new_token
|
39 |
-
inputs = {"input_ids": outputs}
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
@app.get("/stream")
|
43 |
-
async def
|
44 |
return StreamingResponse(
|
45 |
-
|
46 |
media_type="text/event-stream"
|
47 |
)
|
48 |
|
49 |
-
# Interface Gradio
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
gradio_app = gr.Interface(
|
57 |
-
fn=gradio_interface,
|
58 |
-
inputs=gr.Textbox(label="Votre message"),
|
59 |
-
outputs=gr.Textbox(label="Réponse", interactive=False),
|
60 |
-
title="Chat avec (Gradio)"
|
61 |
)
|
62 |
|
63 |
-
|
64 |
-
app = gr.mount_gradio_app(app, gradio_app, path="/gradio")
|
65 |
-
|
66 |
-
# Route racine (peut rediriger vers Gradio ou votre site)
|
67 |
-
@app.get("/", response_class=HTMLResponse)
|
68 |
-
async def home(request: Request):
|
69 |
-
return templates.TemplateResponse("index.html", {"request": request})
|
|
|
1 |
from fastapi import FastAPI, Request
|
2 |
+
from fastapi.responses import HTMLResponse, StreamingResponse
|
3 |
+
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import torch
|
6 |
import asyncio
|
|
|
7 |
|
|
|
8 |
app = FastAPI()
|
|
|
9 |
|
10 |
+
# Chargement du modèle
|
11 |
+
model_name = "microsoft/Phi-3.5-mini-instruct"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
model_name,
|
15 |
+
torch_dtype=torch.float16,
|
16 |
+
device_map="auto"
|
17 |
+
)
|
18 |
+
|
19 |
+
# Fonction de génération avec streaming
|
20 |
+
async def generate_stream(prompt: str):
|
21 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
22 |
+
|
23 |
+
for _ in range(512): # Limite de tokens
|
24 |
+
outputs = model.generate(
|
25 |
+
**inputs,
|
26 |
+
max_new_tokens=1,
|
27 |
+
do_sample=True,
|
28 |
+
temperature=0.7,
|
29 |
+
top_p=0.9
|
30 |
+
)
|
31 |
+
new_token = tokenizer.decode(outputs[0][-1], skip_special_tokens=True)
|
32 |
+
yield f"data: {new_token}\n\n"
|
33 |
+
await asyncio.sleep(0.05)
|
34 |
+
inputs = {"input_ids": outputs}
|
35 |
|
36 |
+
# Interface Gradio standard
|
37 |
+
def generate_text(prompt: str):
|
38 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
39 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
40 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Page web de streaming
|
43 |
+
@app.get("/", response_class=HTMLResponse)
|
44 |
+
async def web_interface(request: Request):
|
45 |
+
return """
|
46 |
+
<!DOCTYPE html>
|
47 |
+
<html>
|
48 |
+
<head>
|
49 |
+
<title>Chat Streaming</title>
|
50 |
+
<script>
|
51 |
+
async function startStream() {
|
52 |
+
const prompt = document.getElementById("prompt").value;
|
53 |
+
const output = document.getElementById("output");
|
54 |
+
output.innerHTML = "";
|
55 |
+
|
56 |
+
const eventSource = new EventSource(`/stream?prompt=${encodeURIComponent(prompt)}`);
|
57 |
+
|
58 |
+
eventSource.onmessage = (event) => {
|
59 |
+
output.innerHTML += event.data;
|
60 |
+
output.scrollTop = output.scrollHeight;
|
61 |
+
};
|
62 |
+
}
|
63 |
+
</script>
|
64 |
+
</head>
|
65 |
+
<body>
|
66 |
+
<h1>Chat en temps réel</h1>
|
67 |
+
<textarea id="prompt" rows="4"></textarea>
|
68 |
+
<button onclick="startStream()">Envoyer</button>
|
69 |
+
<div id="output" style="white-space: pre-wrap; margin-top: 20px;"></div>
|
70 |
+
</body>
|
71 |
+
</html>
|
72 |
+
"""
|
73 |
+
|
74 |
+
# Endpoint de streaming
|
75 |
@app.get("/stream")
|
76 |
+
async def stream_response(prompt: str):
|
77 |
return StreamingResponse(
|
78 |
+
generate_stream(prompt),
|
79 |
media_type="text/event-stream"
|
80 |
)
|
81 |
|
82 |
+
# Interface Gradio (accessible via /gradio)
|
83 |
+
demo = gr.Interface(
|
84 |
+
fn=generate_text,
|
85 |
+
inputs="text",
|
86 |
+
outputs="text",
|
87 |
+
title="Phi-3 Chat"
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
)
|
89 |
|
90 |
+
app = gr.mount_gradio_app(app, demo, path="/gradio")
|
|
|
|
|
|
|
|
|
|
|
|