GueuleDange commited on
Commit
0e1fa04
·
verified ·
1 Parent(s): 6c9be01

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +57 -58
app.py CHANGED
@@ -1,65 +1,64 @@
1
- from fastapi import FastAPI, Request, HTTPException
2
- from fastapi.responses import StreamingResponse, HTMLResponse
3
- from fastapi.templating import Jinja2Templates
4
- import torch
5
- import asyncio
6
- from transformers import AutoTokenizer, AutoModelForCausalLM
7
 
8
- app = FastAPI()
9
- templates = Jinja2Templates(directory="templates")
 
 
10
 
11
- # Configuration du modèle (optimisé pour 2000 tokens)
12
- model_name = "microsoft/Phi-3.5-mini-instruct"
13
- tokenizer = AutoTokenizer.from_pretrained(model_name)
14
- model = AutoModelForCausalLM.from_pretrained(
15
- model_name,
16
- torch_dtype=torch.float16,
17
- device_map="auto",
18
- low_cpu_mem_usage=True # Critique pour les longs contextes
19
- )
20
 
21
- async def generate_stream(prompt: str, max_tokens: int = 2000):
22
- inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
23
- generated_count = 0
24
-
25
- while generated_count < max_tokens:
26
- outputs = model.generate(
27
- **inputs,
28
- max_new_tokens=1,
29
- do_sample=True,
30
- temperature=0.7,
31
- top_p=0.9
32
- )
33
- new_token = tokenizer.decode(outputs[0][-1], skip_special_tokens=True)
34
- yield f"data: {new_token}\n\n"
35
- generated_count += 1
36
-
37
- # Optimisation mémoire
38
- if generated_count % 50 == 0:
39
- await asyncio.sleep(0.01) # Réduit la pression sur le GPU
40
- torch.cuda.empty_cache() # Nettoyage mémoire
41
-
42
- inputs = {"input_ids": outputs}
43
 
44
- @app.get("/", response_class=HTMLResponse)
45
- async def chat_page(request: Request):
46
- return templates.TemplateResponse("stream.html", {"request": request})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- @app.get("/stream")
49
- async def stream_response(prompt: str):
50
- try:
51
- return StreamingResponse(
52
- generate_stream(prompt),
53
- media_type="text/event-stream",
54
- headers={
55
- "Cache-Control": "no-cache",
56
- "Connection": "keep-alive",
57
- "X-Accel-Buffering": "no" # Critique pour les streams longs
58
- }
59
- )
60
- except Exception as e:
61
- raise HTTPException(status_code=500, detail=str(e))
62
 
63
  if __name__ == "__main__":
64
- import uvicorn
65
- uvicorn.run(app, host="0.0.0.0", port=7860)
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("microsoft/Phi-3.5-mini-instruct")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
 
 
 
29
 
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
+ demo.launch()