Spaces:
Runtime error
Runtime error
Commit
·
b860881
1
Parent(s):
c4a2b08
Upload 4 files
Browse files
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
deprecated
|
3 |
+
model
|
4 |
+
output
|
5 |
+
venv
|
6 |
+
v1-*inference.yaml
|
7 |
+
convert*
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,12 +1,105 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Stable Diffusion ONNX UI
|
2 |
+
|
3 |
+
* [First installation](#first-installation)
|
4 |
+
* [How to add models](#how-to-add-models)
|
5 |
+
* [Run](#run)
|
6 |
+
* [Updating](#updating)
|
7 |
+
|
8 |
+
Dead simple gui with support for latest [Diffusers (v0.12.0)](https://github.com/huggingface/diffusers/) on Windows with AMD graphic cards (or CPU, thanks to ONNX and DirectML) with [Stable Diffusion 2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1) or any other model, even inpainting finetuned ones.
|
9 |
+
|
10 |
+
Supported schedulers: DDIM, LMS, PNDM, Euler.
|
11 |
+
|
12 |
+
Built with Gradio.
|
13 |
+
|
14 |
+

|
15 |
+
|
16 |
+

|
17 |
+
|
18 |
+
## First installation
|
19 |
+
|
20 |
+
Prerequisites
|
21 |
+
|
22 |
+
* [Python 3.10](https://www.python.org/downloads/)
|
23 |
+
* [Git for windows](https://git-scm.com/download/win)
|
24 |
+
* An [huggingface.co](https://huggingface.co) account
|
25 |
+
* For a better experience, the [latest version of Powershell](https://github.com/PowerShell/PowerShell/releases)
|
26 |
+
|
27 |
+
From an empty folder:
|
28 |
+
|
29 |
+
```ps1
|
30 |
+
python -m venv venv
|
31 |
+
.\venv\Scripts\activate
|
32 |
+
python -m pip install --upgrade pip
|
33 |
+
pip install wheel wget
|
34 |
+
pip install git+https://github.com/huggingface/diffusers.git
|
35 |
+
pip install transformers onnxruntime onnx gradio torch ftfy spacy scipy OmegaConf accelerate
|
36 |
+
pip install onnxruntime-directml --force-reinstall
|
37 |
+
pip install protobuf==3.20.2
|
38 |
+
python -m wget https://raw.githubusercontent.com/JbPasquier/stable-diffusion-onnx-ui/main/app.py
|
39 |
+
python -m wget https://raw.githubusercontent.com/huggingface/diffusers/main/scripts/convert_original_stable_diffusion_to_diffusers.py -o convert_original_stable_diffusion_to_diffusers.py
|
40 |
+
python -m wget https://raw.githubusercontent.com/huggingface/diffusers/main/scripts/convert_stable_diffusion_checkpoint_to_onnx.py -o convert_stable_diffusion_checkpoint_to_onnx.py
|
41 |
+
python -m wget https://raw.githubusercontent.com/runwayml/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml -o v1-inference.yaml
|
42 |
+
python -m wget https://raw.githubusercontent.com/runwayml/stable-diffusion/main/configs/stable-diffusion/v1-inpainting-inference.yaml -o v1-inpainting-inference.yaml
|
43 |
+
mkdir model
|
44 |
+
```
|
45 |
+
|
46 |
+
## How to add models
|
47 |
+
|
48 |
+
### Stable Diffusion
|
49 |
+
|
50 |
+
```ps1
|
51 |
+
python convert_stable_diffusion_checkpoint_to_onnx.py --model_path="stabilityai/stable-diffusion-2-1" --output_path="model/stable_diffusion_onnx"
|
52 |
+
```
|
53 |
+
|
54 |
+
### Stable Diffusion Inpainting
|
55 |
+
|
56 |
+
```ps1
|
57 |
+
python convert_stable_diffusion_checkpoint_to_onnx.py --model_path="stabilityai/stable-diffusion-2-inpainting" --output_path="model/stable_diffusion_inpainting_onnx"
|
58 |
+
```
|
59 |
+
|
60 |
+
### Other from Hugging Face
|
61 |
+
|
62 |
+
```ps1
|
63 |
+
python convert_stable_diffusion_checkpoint_to_onnx.py --model_path="nitrosocke/Nitro-Diffusion" --output_path="model/nitro_diffusion_onnx"
|
64 |
+
```
|
65 |
+
|
66 |
+
### Other from somewhere else
|
67 |
+
|
68 |
+
Replace `some_file.ckpt` with the path to your ckpt one.
|
69 |
+
|
70 |
+
```ps1
|
71 |
+
python convert_original_stable_diffusion_to_diffusers.py --checkpoint_path="./some_file.ckpt" --dump_path="./some_file"
|
72 |
+
python convert_stable_diffusion_checkpoint_to_onnx.py --model_path="./some_file" --output_path="model/some_onnx"
|
73 |
+
```
|
74 |
+
|
75 |
+
## Run
|
76 |
+
|
77 |
+
```ps1
|
78 |
+
# Ensure that you are in the virtualenv
|
79 |
+
.\venv\Scripts\activate
|
80 |
+
|
81 |
+
# Your computer only
|
82 |
+
python app.py
|
83 |
+
|
84 |
+
# Local network
|
85 |
+
python app.py --local
|
86 |
+
|
87 |
+
# The whole internet
|
88 |
+
python app.py --share
|
89 |
+
|
90 |
+
# Use CPU instead of AMD GPU
|
91 |
+
python app.py --cpu-only
|
92 |
+
```
|
93 |
+
|
94 |
+
Notice that inpainting provide way better results with a proper model like [stable-diffusion-inpainting](https://huggingface.co/stabilityai/stable-diffusion-2-inpainting)
|
95 |
+
|
96 |
+
## Updating
|
97 |
+
|
98 |
+
Remove `venv` folder and `*.py` files and restart the [First installation](#first-installation) process.
|
99 |
+
|
100 |
+
## Credits
|
101 |
+
|
102 |
+
Inspired by:
|
103 |
+
|
104 |
+
* [azuritecoin/OnnxDiffusersUI](https://github.com/azuritecoin/OnnxDiffusersUI)
|
105 |
+
* [averad/256c507baa3dcc9464203dc14610d674](https://gist.github.com/averad/256c507baa3dcc9464203dc14610d674)
|
app.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import gc
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from datetime import datetime
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import Tuple
|
9 |
+
|
10 |
+
from diffusers import OnnxStableDiffusionPipeline, OnnxStableDiffusionImg2ImgPipeline
|
11 |
+
from diffusers import OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy
|
12 |
+
from diffusers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, EulerDiscreteScheduler
|
13 |
+
from diffusers import __version__ as _df_version
|
14 |
+
import gradio as gr
|
15 |
+
import numpy as np
|
16 |
+
from packaging import version
|
17 |
+
import PIL
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
def get_latents_from_seed(seed: int, batch_size: int, height: int, width: int) -> np.ndarray:
|
22 |
+
latents_shape = (batch_size, 4, height // 8, width // 8)
|
23 |
+
rng = np.random.default_rng(seed)
|
24 |
+
image_latents = rng.standard_normal(latents_shape).astype(np.float32)
|
25 |
+
return image_latents
|
26 |
+
|
27 |
+
|
28 |
+
def run_diffusers(
|
29 |
+
prompt: str,
|
30 |
+
neg_prompt: str,
|
31 |
+
init_image: PIL.Image.Image,
|
32 |
+
iteration_count: int,
|
33 |
+
batch_size: int,
|
34 |
+
steps: int,
|
35 |
+
guidance_scale: float,
|
36 |
+
height: int,
|
37 |
+
width: int,
|
38 |
+
eta: float,
|
39 |
+
denoise_strength: float,
|
40 |
+
seed: str,
|
41 |
+
mask_image: PIL.Image.Image
|
42 |
+
) -> Tuple[list, str]:
|
43 |
+
global model_name
|
44 |
+
global current_pipe
|
45 |
+
global pipe
|
46 |
+
|
47 |
+
prompt.strip("\n")
|
48 |
+
neg_prompt.strip("\n")
|
49 |
+
|
50 |
+
if seed == "":
|
51 |
+
rng = np.random.default_rng()
|
52 |
+
seed = rng.integers(np.iinfo(np.uint32).max)
|
53 |
+
else:
|
54 |
+
try:
|
55 |
+
seed = int(seed) & np.iinfo(np.uint32).max
|
56 |
+
except ValueError:
|
57 |
+
seed = hash(seed) & np.iinfo(np.uint32).max
|
58 |
+
seeds = np.array([seed], dtype=np.uint32)
|
59 |
+
if iteration_count > 1:
|
60 |
+
seed_seq = np.random.SeedSequence(seed)
|
61 |
+
seeds = np.concatenate((seeds, seed_seq.generate_state(iteration_count - 1)))
|
62 |
+
|
63 |
+
output_path = "output"
|
64 |
+
os.makedirs(output_path, exist_ok=True)
|
65 |
+
|
66 |
+
sched_name = str(pipe.scheduler._class_name)
|
67 |
+
prompts = [prompt]*batch_size
|
68 |
+
neg_prompts = [neg_prompt]*batch_size if neg_prompt != "" else None
|
69 |
+
images = []
|
70 |
+
time_taken = 0
|
71 |
+
output_base_path = Path("./output")
|
72 |
+
for i in range(iteration_count):
|
73 |
+
dt_obj = datetime.now()
|
74 |
+
dt_cust = dt_obj.strftime("%Y-%m-%d_%H-%M-%S")
|
75 |
+
image_name = dt_cust + "_" + str(seed) + ".png"
|
76 |
+
text_name = dt_cust + "_" + str(seed) + "_info.txt"
|
77 |
+
image_path = output_base_path / image_name
|
78 |
+
text_path = output_base_path / text_name
|
79 |
+
info = f"Prompt: {prompt}\nNegative prompt: {neg_prompt}\nSeed: {seeds[i]}\n" + \
|
80 |
+
f"Scheduler: {sched_name}\nScale: {guidance_scale}\nHeight: {height}\nWidth: {width}\nETA: {eta}\n" + \
|
81 |
+
f"Model: {model_name}\nIteration size: {iteration_count}\nBatch size: {batch_size}\nSteps: {steps}"
|
82 |
+
if (current_pipe == "img2img" or current_pipe == "inpaint" ):
|
83 |
+
info = info + f" denoise: {denoise_strength}"
|
84 |
+
with open(text_path, 'w', encoding='utf-8') as f:
|
85 |
+
f.write(info)
|
86 |
+
|
87 |
+
if current_pipe == "txt2img":
|
88 |
+
# Generate our own latents so that we can provide a seed.
|
89 |
+
latents = get_latents_from_seed(seeds[i], batch_size, height, width)
|
90 |
+
|
91 |
+
start = time.time()
|
92 |
+
batch_images = pipe(
|
93 |
+
prompts, negative_prompt=neg_prompts, height=height, width=width, num_inference_steps=steps,
|
94 |
+
guidance_scale=guidance_scale, eta=eta, latents=latents).images
|
95 |
+
finish = time.time()
|
96 |
+
elif current_pipe == "img2img":
|
97 |
+
# NOTE: at this time there's no good way of setting the seed for the random noise added by the scheduler
|
98 |
+
# np.random.seed(seeds[i])
|
99 |
+
start = time.time()
|
100 |
+
batch_images = pipe(
|
101 |
+
prompts, negative_prompt=neg_prompts, init_image=init_image, height=height, width=width,
|
102 |
+
num_inference_steps=steps, guidance_scale=guidance_scale, eta=eta, strength=denoise_strength,
|
103 |
+
num_images_per_prompt=batch_size).images
|
104 |
+
finish = time.time()
|
105 |
+
elif current_pipe == "inpaint":
|
106 |
+
start = time.time()
|
107 |
+
# NOTE: legacy require init_image but inpainting use image
|
108 |
+
batch_images = pipe(
|
109 |
+
prompts, negative_prompt=neg_prompts, image=init_image, mask_image=mask_image, height=height, width=width,
|
110 |
+
num_inference_steps=steps, guidance_scale=guidance_scale, eta=eta, strength=denoise_strength,
|
111 |
+
num_images_per_prompt=batch_size, init_image=init_image).images
|
112 |
+
finish = time.time()
|
113 |
+
|
114 |
+
short_prompt = prompt.strip("<>:\"/\\|?*\n\t")
|
115 |
+
short_prompt = short_prompt[:99] if len(short_prompt) > 100 else short_prompt
|
116 |
+
for j in range(batch_size):
|
117 |
+
batch_images[j].save(image_path)
|
118 |
+
|
119 |
+
images.extend(batch_images)
|
120 |
+
time_taken = time_taken + (finish - start)
|
121 |
+
|
122 |
+
time_taken = time_taken / 60.0
|
123 |
+
if iteration_count > 1:
|
124 |
+
status = f"Run took {time_taken:.1f} minutes " + \
|
125 |
+
f"to generate {iteration_count} iterations with batch size of {batch_size}. seeds: " + \
|
126 |
+
np.array2string(seeds, separator=",")
|
127 |
+
else:
|
128 |
+
status = f"Run took {time_taken:.1f} minutes to generate a batch size of " + \
|
129 |
+
f"{batch_size}. seed: {seeds[0]}"
|
130 |
+
|
131 |
+
return images, status
|
132 |
+
|
133 |
+
|
134 |
+
def clear_click():
|
135 |
+
return {
|
136 |
+
prompt: "", neg_prompt: "", image: None, mask: None, mask_mode: "Draw mask", sch: "Euler", iter: 1, batch: 1,
|
137 |
+
drawn_mask: None, steps: 25, guid: 11, height: 512, width: 512, eta: 0.0, denoise: 0.8, seed: ""}
|
138 |
+
|
139 |
+
|
140 |
+
def generate_click(
|
141 |
+
model_drop, prompt, neg_prompt, sch, iter, batch, steps, guid, height, width, eta,
|
142 |
+
seed, image, denoise, mask, pipeline, mask_mode, drawn_mask
|
143 |
+
):
|
144 |
+
global model_name
|
145 |
+
global provider
|
146 |
+
global current_pipe
|
147 |
+
global scheduler
|
148 |
+
global pipe
|
149 |
+
|
150 |
+
# reset scheduler and pipeline if model is different
|
151 |
+
if model_name != model_drop:
|
152 |
+
model_name = model_drop
|
153 |
+
scheduler = None
|
154 |
+
pipe = None
|
155 |
+
model_path = os.path.join("model", model_name)
|
156 |
+
|
157 |
+
if sch == "PNDM" and type(scheduler) is not PNDMScheduler:
|
158 |
+
scheduler = PNDMScheduler.from_pretrained(model_path, subfolder="scheduler")
|
159 |
+
elif sch == "LMS" and type(scheduler) is not LMSDiscreteScheduler:
|
160 |
+
scheduler = LMSDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")
|
161 |
+
elif sch == "DDIM" and type(scheduler) is not DDIMScheduler:
|
162 |
+
scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
|
163 |
+
elif sch == "Euler" and type(scheduler) is not EulerDiscreteScheduler:
|
164 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(model_path, subfolder="scheduler")
|
165 |
+
|
166 |
+
# select which pipeline depending on current tab
|
167 |
+
if pipeline == "TEXT2IMG":
|
168 |
+
if current_pipe != "txt2img" or pipe is None:
|
169 |
+
pipe = OnnxStableDiffusionPipeline.from_pretrained(
|
170 |
+
model_path, provider=provider, scheduler=scheduler)
|
171 |
+
gc.collect()
|
172 |
+
current_pipe = "txt2img"
|
173 |
+
|
174 |
+
if type(pipe.scheduler) is not type(scheduler):
|
175 |
+
pipe.scheduler = scheduler
|
176 |
+
|
177 |
+
return run_diffusers(
|
178 |
+
prompt, neg_prompt, None, iter, batch, steps, guid, height, width, eta, 0,
|
179 |
+
seed, None)
|
180 |
+
elif pipeline == "IMG2IMG":
|
181 |
+
if current_pipe != "img2img" or pipe is None:
|
182 |
+
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
|
183 |
+
model_path, provider=provider, scheduler=scheduler)
|
184 |
+
gc.collect()
|
185 |
+
current_pipe = "img2img"
|
186 |
+
|
187 |
+
if type(pipe.scheduler) is not type(scheduler):
|
188 |
+
pipe.scheduler = scheduler
|
189 |
+
|
190 |
+
# input image resizing
|
191 |
+
input_image = image.convert("RGB")
|
192 |
+
input_width, input_height = input_image.size
|
193 |
+
if height / width > input_height / input_width:
|
194 |
+
adjust_width = int(input_width * height / input_height)
|
195 |
+
input_image = input_image.resize((adjust_width, height))
|
196 |
+
left = (adjust_width - width) // 2
|
197 |
+
right = left + width
|
198 |
+
input_image = input_image.crop((left, 0, right, height))
|
199 |
+
else:
|
200 |
+
adjust_height = int(input_height * width / input_width)
|
201 |
+
input_image = input_image.resize((width, adjust_height))
|
202 |
+
top = (adjust_height - height) // 2
|
203 |
+
bottom = top + height
|
204 |
+
input_image = input_image.crop((0, top, width, bottom))
|
205 |
+
|
206 |
+
return run_diffusers(
|
207 |
+
prompt, neg_prompt, input_image, iter, batch, steps, guid, height, width, eta,
|
208 |
+
denoise, seed, None)
|
209 |
+
elif pipeline == "Inpainting":
|
210 |
+
if current_pipe != "inpaint" or pipe is None:
|
211 |
+
# >=0.8.0: Model name must ends with "inpainting" to use the proper pipeline
|
212 |
+
# This allows usage of Legacy pipeline for models not finetuned for inpainting
|
213 |
+
# see huggingface/diffusers!51
|
214 |
+
if not model_name.endswith("inpainting"):
|
215 |
+
pipe = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
|
216 |
+
model_path, provider=provider, scheduler=scheduler)
|
217 |
+
else:
|
218 |
+
# on >=0.7.0 & <0.8.0 or model finetuned for inpainting
|
219 |
+
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
|
220 |
+
model_path, provider=provider, scheduler=scheduler)
|
221 |
+
gc.collect()
|
222 |
+
current_pipe = "inpaint"
|
223 |
+
|
224 |
+
if type(pipe.scheduler) is not type(scheduler):
|
225 |
+
pipe.scheduler = scheduler
|
226 |
+
|
227 |
+
if mask_mode == "Upload mask":
|
228 |
+
input_image = image.convert("RGB")
|
229 |
+
|
230 |
+
# input mask resizing
|
231 |
+
input_mask = mask.convert("RGB")
|
232 |
+
input_mask_width, input_mask_height = input_mask.size
|
233 |
+
if height / width > input_mask_height / input_mask_width:
|
234 |
+
adjust_mask_width = int(input_mask_width * height / input_mask_height)
|
235 |
+
input_mask = input_mask.resize((adjust_mask_width, height))
|
236 |
+
mask_left = (adjust_mask_width - width) // 2
|
237 |
+
mask_right = mask_left + width
|
238 |
+
input_mask = input_mask.crop((mask_left, 0, mask_right, height))
|
239 |
+
else:
|
240 |
+
adjust_height = int(input_mask_height * width / input_mask_width)
|
241 |
+
input_mask = input_mask.resize((width, adjust_height))
|
242 |
+
top = (adjust_height - height) // 2
|
243 |
+
bottom = top + height
|
244 |
+
input_mask = input_mask.crop((0, top, width, bottom))
|
245 |
+
else:
|
246 |
+
input_image = drawn_mask['image'].convert('RGB')
|
247 |
+
input_mask = drawn_mask['mask']
|
248 |
+
|
249 |
+
# input image resizing
|
250 |
+
input_width, input_height = input_image.size
|
251 |
+
if height / width > input_height / input_width:
|
252 |
+
adjust_width = int(input_width * height / input_height)
|
253 |
+
input_image = input_image.resize((adjust_width, height))
|
254 |
+
left = (adjust_width - width) // 2
|
255 |
+
right = left + width
|
256 |
+
input_image = input_image.crop((left, 0, right, height))
|
257 |
+
else:
|
258 |
+
adjust_height = int(input_height * width / input_width)
|
259 |
+
input_image = input_image.resize((width, adjust_height))
|
260 |
+
top = (adjust_height - height) // 2
|
261 |
+
bottom = top + height
|
262 |
+
input_image = input_image.crop((0, top, width, bottom))
|
263 |
+
|
264 |
+
|
265 |
+
return run_diffusers(
|
266 |
+
prompt, neg_prompt, input_image, iter, batch, steps, guid, height, width, eta,
|
267 |
+
denoise, seed, input_mask)
|
268 |
+
|
269 |
+
|
270 |
+
def choose_sch(sched_name: str):
|
271 |
+
if sched_name == "DDIM":
|
272 |
+
return gr.update(visible=True)
|
273 |
+
else:
|
274 |
+
return gr.update(visible=False)
|
275 |
+
|
276 |
+
def choose_pipeline(pipeline: str, mask_mode: str):
|
277 |
+
if(pipeline == "TEXT2IMG"):
|
278 |
+
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
|
279 |
+
if(pipeline == "IMG2IMG"):
|
280 |
+
return (gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False))
|
281 |
+
if(pipeline == "Inpainting"):
|
282 |
+
if mask_mode == "Draw mask":
|
283 |
+
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True))
|
284 |
+
else:
|
285 |
+
return (gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False))
|
286 |
+
|
287 |
+
def choose_mask_mode(mask_mode):
|
288 |
+
if mask_mode == "Draw mask":
|
289 |
+
return [gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)]
|
290 |
+
else:
|
291 |
+
return [gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)]
|
292 |
+
|
293 |
+
def size_512_lock(size):
|
294 |
+
if size != 512:
|
295 |
+
return gr.update(interactive=False)
|
296 |
+
return gr.update(interactive=True)
|
297 |
+
|
298 |
+
if __name__ == "__main__":
|
299 |
+
parser = argparse.ArgumentParser(description="Gradio interface for ONNX based Stable Diffusion")
|
300 |
+
parser.add_argument("--cpu-only", action="store_true", default=False, help="Run ONNX with CPU")
|
301 |
+
parser.add_argument("--local", action="store_true", default=False, help="Open to local network")
|
302 |
+
parser.add_argument("--public", action="store_true", default=False, help="Create a publicly shareable link for the interface")
|
303 |
+
args = parser.parse_args()
|
304 |
+
|
305 |
+
# variables for ONNX pipelines
|
306 |
+
model_name = None
|
307 |
+
provider = "CPUExecutionProvider" if args.cpu_only else "DmlExecutionProvider"
|
308 |
+
current_pipe = "txt2img"
|
309 |
+
|
310 |
+
# diffusers objects
|
311 |
+
scheduler = None
|
312 |
+
pipe = None
|
313 |
+
|
314 |
+
# search the model folder
|
315 |
+
model_dir = "model"
|
316 |
+
model_list = []
|
317 |
+
with os.scandir(model_dir) as scan_it:
|
318 |
+
for entry in scan_it:
|
319 |
+
if entry.is_dir():
|
320 |
+
model_list.append(entry.name)
|
321 |
+
default_model = model_list[0] if len(model_list) > 0 else None
|
322 |
+
|
323 |
+
# create gradio block
|
324 |
+
title = "Stable Diffusion " + str(version.parse(_df_version))
|
325 |
+
possibilities = ['TEXT2IMG', 'IMG2IMG', 'Inpainting']
|
326 |
+
|
327 |
+
with gr.Blocks(title=title) as app:
|
328 |
+
with gr.Row():
|
329 |
+
with gr.Column(scale=1, min_width=600):
|
330 |
+
with gr.Column(variant='panel'):
|
331 |
+
with gr.Row():
|
332 |
+
model_drop = gr.Dropdown(model_list, value=default_model, label="Model", interactive=True)
|
333 |
+
pipeline = gr.Radio(possibilities, value="TEXT2IMG", label="Pipeline")
|
334 |
+
sch = gr.Radio(["DDIM", "LMS", "PNDM", "Euler"], value="Euler", label="Scheduler")
|
335 |
+
eta = gr.Slider(0, 1, value=0.0, step=0.01, label="DDIM eta", visible=False)
|
336 |
+
seed = gr.Textbox(value="", max_lines=1, label="Seed")
|
337 |
+
with gr.Column():
|
338 |
+
mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], value="Draw mask", visible=False)
|
339 |
+
image = gr.Image(label="Input image", type="pil", visible=False)
|
340 |
+
mask = gr.Image(label="Input mask", type="pil", visible=False)
|
341 |
+
drawn_mask = gr.Image(label="Input image and mask", source="upload", tool="sketch", type="pil", visible=False)
|
342 |
+
prompt = gr.Textbox(value="", lines=2, label="Prompt")
|
343 |
+
neg_prompt = gr.Textbox(value="", lines=2, label="Negative prompt")
|
344 |
+
steps = gr.Slider(1, 150, value=25, step=1, label="Steps")
|
345 |
+
guid = gr.Slider(0, 20, value=11, step=0.5, label="Guidance")
|
346 |
+
with gr.Column():
|
347 |
+
height = gr.Slider(16, 1920, value=512, step=8, label="Height")
|
348 |
+
width = gr.Slider(16, 1920, value=512, step=8, label="Width")
|
349 |
+
denoise = gr.Slider(0, 1, value=0.8, step=0.01, label="Denoise strength", visible=False)
|
350 |
+
with gr.Column():
|
351 |
+
iter = gr.Slider(1, 24, value=1, step=1, label="Iteration count")
|
352 |
+
batch = gr.Slider(1, 4, value=1, step=1, label="Batch size")
|
353 |
+
with gr.Column(scale=1, min_width=600):
|
354 |
+
with gr.Row():
|
355 |
+
gen_btn = gr.Button("Generate", variant="primary")
|
356 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
357 |
+
with gr.Row(variant='panel'):
|
358 |
+
image_out = gr.Gallery(value=None, label="Images")
|
359 |
+
status_out = gr.Textbox(value="", label="Status")
|
360 |
+
|
361 |
+
# config components
|
362 |
+
all_inputs = [
|
363 |
+
model_drop, prompt, neg_prompt, sch, iter, batch, steps, guid, height, width,
|
364 |
+
eta, seed, image, denoise, mask, pipeline, mask_mode, drawn_mask]
|
365 |
+
clear_btn.click(fn=clear_click, inputs=None, outputs=all_inputs, queue=False)
|
366 |
+
gen_btn.click(fn=generate_click, inputs=all_inputs, outputs=[image_out, status_out])
|
367 |
+
|
368 |
+
height.change(fn=size_512_lock, inputs=height, outputs=width)
|
369 |
+
width.change(fn=size_512_lock, inputs=width, outputs=height)
|
370 |
+
mask_mode.change(fn=choose_mask_mode, inputs=mask_mode, outputs=[image, mask, drawn_mask])
|
371 |
+
pipeline.change(fn=choose_pipeline, inputs=[pipeline, mask_mode], outputs=[image, mask, denoise, mask_mode, drawn_mask])
|
372 |
+
sch.change(fn=choose_sch, inputs=sch, outputs=eta)
|
373 |
+
|
374 |
+
image_out.style(grid=2)
|
375 |
+
|
376 |
+
app.queue(concurrency_count=1, api_open=False)
|
377 |
+
app.launch(inbrowser=True, server_name="0.0.0.0" if args.local else "127.0.0.1", show_api=False, quiet=True, share=args.public) # open to local network: server_name="0.0.0.0"
|