Groundlight's picture
typo resolved
06cf761
import random
from threading import Thread
import gradio as gr
import spaces
import torch # Need this for torch.no_grad()
from datasets import load_dataset
from qwen_vl_utils import process_vision_info
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
)
from trl import ModelConfig
def get_eval_dataset():
full_dataset = load_dataset("sunildkumar/message-decoding-words-and-sequences")[
"train"
]
full_dataset = full_dataset.shuffle(seed=42)
# split the dataset with the same seed as used in the training script
splits = full_dataset.train_test_split(test_size=0.1, seed=42)
test_dataset = splits["test"]
return test_dataset
def load_model_and_tokenizer():
model_config = ModelConfig(
model_name_or_path="Groundlight/message-decoding-r1",
torch_dtype="bfloat16",
use_peft=False,
)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
pretrained_model_name_or_path=model_config.model_name_or_path,
torch_dtype=model_config.torch_dtype,
use_cache=False,
device_map="auto", # Force CPU usage
)
# put model in eval mode
model.eval()
processor = AutoProcessor.from_pretrained(
model_config.model_name_or_path, padding_side="left"
)
return model, processor
# Move resource loading inside a function
def load_resources():
global eval_dataset, model, processor
eval_dataset = get_eval_dataset()
model, processor = load_model_and_tokenizer()
def show_random_example():
# Get a random example
random_idx = random.randint(0, len(eval_dataset) - 1)
example = eval_dataset[random_idx]
# Return image for display, mapping for state, and image for state
return example["image"], example["mapping"], example["image"]
def prepare_model_input(image, mapping, processor, submitted_word):
"""
Prepare the input for the model using the mapping, processor, and submitted word.
Args:
image: The decoder image to use
mapping (dict): The mapping data from the dataset
processor: The model's processor/tokenizer
submitted_word (str): The word submitted by the user
Returns:
dict: The processed inputs ready for the model
"""
decoded_message = submitted_word.lower()
print(f"Decoded message: {decoded_message}")
# reverse the decoder to encode the word
encoder = {v: k for k, v in mapping.items()}
print(f"Encoder: {encoder}")
# leaving the space as is
coded_message = [encoder[c] if c in encoder else c for c in decoded_message]
print(f"Coded message: {coded_message}")
# add spaces between each character to prevent tokenization issues
coded_message = " ".join(coded_message)
instruction = (
"Use the decoder in the image to decode a coded message."
"The decoded message will be one or more words. Underscore characters "
'("_") in the coded message should be mapped to a space (" ") when decoding.'
)
ending = (
"Show your work in <think> </think> tags and return the answer in <answer> </answer> tags. "
"While thinking, you must include a section with the decoded characters using <chars></chars> tags. "
"The <chars> section should include the decoded characters in the order they are decoded. It should include the "
"underscore character wherever there is a space in the decoded message. For example, if the coded message is "
"a b c _ d e f, the chars section might be <chars> c a t _ d o g </chars>. You can think about the problem for "
"as long as you'd like. While thinking, you should robustly verify your solution. Once you are done thinking, "
f"provide your answer in the <answer> section, e.g. <answer> cat dog </answer>. The coded message is: {coded_message}."
)
instruction = f"{instruction} {ending}"
print(f"Instruction: {instruction}")
r1_messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": "You are a helpful assistant. You first think about the reasoning process in the mind and then provide the user with the answer.",
}
],
},
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": instruction},
],
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "Let me solve this step by step.\n<think>"}
],
},
]
texts = processor.apply_chat_template(
r1_messages, continue_final_message=True, tokenize=False
)
image_input, _ = process_vision_info(r1_messages)
image_input = [image_input]
batch = processor(
text=texts,
images=image_input,
padding=True,
return_tensors="pt",
)
return batch
def encode_word(word, mapping):
"""
Encode a word using the given mapping.
"""
if not word or not mapping:
return ""
word = word.lower()
# reverse the decoder to encode the word
encoder = {v: k for k, v in mapping.items()}
# leaving the space as is
coded_message = [encoder[c] if c in encoder else c for c in word]
return " ".join(coded_message)
def validate_and_submit(word, mapping):
# Check if input contains only letters
if not word.replace(" ", "").isalpha():
gr.Warning(
"Invalid input! Please enter only English letters and spaces. No numbers or punctuation allowed."
)
return (
gr.update(), # word input
gr.update(), # submit button
gr.update(interactive=False), # run button - disable but keep visible
gr.update(visible=False), # encoded word display
)
if not mapping:
gr.Warning("Please generate a decoder first")
return (
gr.update(), # word input
gr.update(), # submit button
gr.update(interactive=False), # run button - disable but keep visible
gr.update(visible=False), # encoded word display
)
word = word.lower()
encoded_word = encode_word(word, mapping)
# Only enable run button if we have a valid encoded word
has_valid_encoded_word = bool(encoded_word.strip())
if not has_valid_encoded_word:
gr.Warning(
"Invalid input! The word contains characters that cannot be encoded with the current decoder."
)
return (
gr.update(), # word input
gr.update(), # submit button
gr.update(interactive=False), # run button - disable but keep visible
gr.update(visible=False), # encoded word display
)
# Return updates for input, submit button, run button, and encoded word display
return (
gr.update(value=word, interactive=False, label="Submitted Word"),
gr.update(interactive=False), # Disable submit button
gr.update(
interactive=has_valid_encoded_word
), # Enable run button only if valid, but always visible
gr.update(
value=f"Encoded message: {encoded_word}", visible=has_valid_encoded_word
), # Show encoded message
)
def prepare_for_inference():
"""Setup function that runs before streaming starts"""
return (
gr.update(value="", visible=True), # Clear and show output
gr.update(interactive=False), # Disable run button
gr.update(visible=True), # Show loading indicator
)
@spaces.GPU
def run_inference(word, image, mapping):
"""Main inference function, now focused just on generation"""
if not word or not image or not mapping:
raise gr.Error("Please submit a word and load a decoder first")
# Prepare model input
model_inputs = prepare_model_input(image, mapping, processor, word)
model_inputs = {k: v.to("cuda") for k, v in model_inputs.items()}
# Initialize streamer
streamer = TextIteratorStreamer(
tokenizer=processor,
skip_special_tokens=True,
decode_kwargs={"skip_special_tokens": True},
)
# Set up generation parameters
generation_kwargs = dict(
**model_inputs,
max_new_tokens=512,
do_sample=True,
temperature=1.0,
streamer=streamer,
)
# Start generation in a separate thread with torch.no_grad()
def generate_with_no_grad():
with torch.no_grad():
model.generate(**generation_kwargs)
thread = Thread(target=generate_with_no_grad)
thread.start()
# Stream the output
generated_text = ""
for new_text in streamer:
generated_text += new_text
yield generated_text
thread.join()
return generated_text
# Create the Gradio interface
with gr.Blocks() as demo:
# Load resources when the app starts
load_resources()
gr.Markdown("# Groundlight's Visual Reasoning Model - Cryptogram Decoder")
current_mapping = gr.State()
current_image = gr.State()
with gr.Row():
# Left column - Inputs
with gr.Column(scale=1):
# Instructions at the top
instructions = """
Welcome! This demos Groundlight's visual reasoning model trained to decode cryptograms. To use the model:
1. Generate a decoder image. This will be provided to the model to decode your message.
2. Enter your message in the text box below. Your message should only contain English letters and spaces.
Some examples:
• hello world
• i love reinforcement learning
• groundlight makes computer vision easy
3. Encode your message. Just click the "Encode Message" button, and we'll handle encoding for you.
4. Run the model. You will see the model's reasoning process and the decoded message in <answer></answer> tags.
"""
gr.Textbox(
value=instructions,
label="Instructions",
interactive=False,
lines=4,
)
# Image display component
image_output = gr.Image(label="Decoder")
# Button to load new random example
next_button = gr.Button("Generate Random Decoder")
# Text input for the word
word_input = gr.Textbox(
label="Enter your message",
placeholder="Enter message here...",
max_lines=1,
show_copy_button=False,
)
gr.Markdown(
"Note: Only English letters and spaces are allowed. Please do not enter any numbers or punctuation."
)
# Add encoded word display
encoded_word_display = gr.Textbox(
label="Encoded Message",
interactive=False,
visible=False,
max_lines=1,
show_copy_button=True,
)
# Group submit and run buttons vertically
with gr.Column():
submit_button = gr.Button("Encode Message")
run_button = gr.Button("Run Model", interactive=False)
# Right column - Outputs
with gr.Column(scale=1):
# Output area for model response
model_output = gr.Textbox(
label="Model Output",
interactive=False,
lines=40,
max_lines=80,
container=True,
show_copy_button=True,
visible=True,
)
# Add loading indicator
loading_indicator = gr.HTML(visible=False)
# Event handlers
next_button.click(
fn=show_random_example, outputs=[image_output, current_mapping, current_image]
)
# Validate word on submit and update interface
submit_button.click(
fn=validate_and_submit,
inputs=[word_input, current_mapping],
outputs=[word_input, submit_button, run_button, encoded_word_display],
)
run_button.click(
fn=prepare_for_inference,
outputs=[model_output, run_button, loading_indicator],
).then(
fn=run_inference,
inputs=[word_input, current_image, current_mapping],
outputs=model_output,
api_name=False,
).then(
lambda: (
gr.update(interactive=False),
gr.update(visible=False),
gr.update(interactive=True, label="Enter your message"),
gr.update(interactive=True),
gr.update(visible=False),
),
None,
[
run_button,
loading_indicator,
word_input,
submit_button,
encoded_word_display,
],
)
if __name__ == "__main__":
# for local testing
# demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
# updates HF
demo.launch()