|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
|
|
|
|
model_name = "databricks/dolly-v2-3b" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
class ChatInput(BaseModel): |
|
user_input: str |
|
|
|
@app.post("/chat") |
|
async def chat(chat_input: ChatInput): |
|
inputs = tokenizer(chat_input.user_input, return_tensors="pt").to("cuda") |
|
outputs = model.generate(**inputs, max_length=200, do_sample=True) |
|
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return {"response": response_text} |
|
|