Spaces:
Running
on
Zero
Running
on
Zero
File size: 36,516 Bytes
c4fc213 8ec1a00 3528a93 8ec1a00 bd0e4e5 8ec1a00 cd724ff 89a95a4 7b86996 c6d5233 cd724ff 8ec1a00 5d89b27 bf3a197 8ec1a00 c4fc213 5a74436 c4fc213 dc712bc 5a74436 c50bf62 dc712bc 235c801 dc712bc c50bf62 ef99879 c50bf62 8ec1a00 cc95ac6 22e294e 8ec1a00 e627079 b8a6f24 8ec1a00 b8a6f24 2c6f6a3 a3f47ba 3e84d46 b8a6f24 8ec1a00 b8a6f24 735569c 8ec1a00 97075c7 8ec1a00 b8a6f24 774f8ef e627079 774f8ef bb30bbf 774f8ef bb30bbf 774f8ef cc95ac6 774f8ef 8ec1a00 b8a6f24 2691558 b8a6f24 8ec1a00 42898bb 774f8ef bf3a197 8ec1a00 42898bb 774f8ef 3f9ece7 dc16460 adac44f dc5ce6d 8ec1a00 f28f6b8 89a95a4 8ec1a00 5c1fc8b 89a95a4 8ec1a00 092ec62 5408b1b acfbe27 8ec1a00 3f9ece7 5c1fc8b 8ec1a00 5c1fc8b f28f6b8 5c1fc8b 8ec1a00 f28f6b8 8ec1a00 5c1fc8b f28f6b8 8ec1a00 3f9ece7 e739f50 bf3a197 adac44f f28f6b8 8ec1a00 f819e92 42898bb 8ec1a00 42898bb c6d5233 4d14e15 8ec1a00 8380400 1ba672e 8380400 1ba672e 8380400 1ba672e 8380400 1ba672e f387293 1ba672e 1be1cf6 f12d28e 8ec1a00 f9114be a72afdf 5408b1b 6fd28c7 5408b1b eb90731 494f053 6fd28c7 15de9b1 a9ec85f 97075c7 f819e92 e719ab6 a9ec85f 494f053 a9ec85f 494f053 bf3a197 6e7e2a0 bf3a197 e719ab6 5d89b27 6e7e2a0 494f053 badcdde 494f053 527920c a8cf463 494f053 db4f531 494f053 c87f415 494f053 8ec1a00 8600d7b c593fa0 df9c347 c593fa0 8600d7b 05a4c54 8600d7b 66e7edf 05a4c54 8600d7b 05a4c54 8600d7b 05a4c54 8600d7b dd7f07b 6a25cb7 ef99879 8ec1a00 6a25cb7 8ec1a00 f914a1f 8ec1a00 f819e92 642c2cd 8ec1a00 d6d4270 f22647e e7e0aeb f22647e 745410d 1e0caf5 8ec1a00 092ec62 8ec1a00 642c2cd 646de05 47167b8 f51d07d 47167b8 97075c7 642c2cd 47167b8 646de05 8ec1a00 73aa6c5 3992a21 52205dc 8ec1a00 516a724 8ec1a00 f819e92 8ec1a00 f819e92 8ec1a00 3d7bc1a 97075c7 8ec1a00 9567049 8ec1a00 42898bb 9567049 97075c7 1ee2073 97075c7 78fdc67 3bb5a93 78fdc67 37d9ddf b776e8f 37d9ddf 97075c7 9567049 1ee2073 97075c7 78fdc67 3bb5a93 78fdc67 37d9ddf b776e8f 37d9ddf 97075c7 8ec1a00 9567049 8ec1a00 3d7bc1a 97075c7 3d7bc1a 8ec1a00 f819e92 8ec1a00 42898bb 8ec1a00 f819e92 8ec1a00 e9f4fd9 f914a1f e9f4fd9 8ec1a00 f914a1f 8ec1a00 312c077 8ec1a00 85a1962 312c077 85a1962 8ec1a00 d419153 85a1962 d419153 c40691f 8ec1a00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 |
# Import 'spaces' early to prevent CUDA initialization conflicts
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
# Delay PyTorch and related imports until after 'spaces'
import re
import gradio as gr
import numpy as np
import tempfile
from tqdm import tqdm
from einops import rearrange
from pydub import AudioSegment, silence
from model import UNetT, DiT
from cached_path import cached_path
from model.utils import (
get_tokenizer,
convert_char_to_pinyin,
)
from infer.utils_infer import (
load_vocoder,
load_model,
# preprocess_ref_audio_text,
# infer_process,
remove_silence_edges,
remove_silence_for_generated_wav,
save_spectrogram,
)
from tokenizers import Tokenizer
from phonemizer import phonemize
from transformers import pipeline
import click
import soundfile as sf
# Import PyTorch and torchaudio after 'spaces'
import torch
import torchaudio
# GPU decorator for 'spaces'
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
# Determine the device
device = (
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
# Set dtype: float16 for GPU, bfloat16 for CPU, and default to float32 for other cases
if device == "cuda":
dtype = torch.float16
elif device == "cpu":
dtype = torch.float32
else:
dtype = torch.float32
# Create the torch.device object
device = torch.device(device)
print(f"Using device: {device}, dtype: {dtype}")
pipe = pipeline(
"automatic-speech-recognition",
model="openai/whisper-large-v3-turbo",
torch_dtype=dtype,
device=device,
)
#vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
vocos = load_vocoder()
# --------------------- Settings -------------------- #
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 16 # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1
fix_duration = None
ref_language = "en-us"
language = "en-us"
DEFAULT_TTS_MODEL = "F5-TTS"
tts_model_choice = DEFAULT_TTS_MODEL
# load models
#def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
# F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
# return load_model(DiT, F5TTS_model_cfg, ckpt_path)
#def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
# E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
# return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
ckpt_path, vocab_path = ckpt_path.strip(), vocab_path.strip()
if ckpt_path.startswith("hf://"):
ckpt_path = str(cached_path(ckpt_path))
if vocab_path.startswith("hf://"):
vocab_path = str(cached_path(vocab_path))
if model_cfg is None:
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
#F2TTS_ema_model3 = load_f5tts()
#E2TTS_ema_model4 = load_e2tts() if USING_SPACES else None
custom_ema_model, pre_custom_path = None, ""
chat_model_state = None
chat_tokenizer_state = None
# load models
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
#F5TTS_ema_model = load_custom(
# "hf://Gregniuki/F5-tts_English_German_Polish/English/model_222600.pt", "", F5TTS_model_cfg
#)
F5TTS_ema_model = load_custom(
"hf://Gregniuki/F5-tts_English_German_Polish/multi/model_300000.pt", "", F5TTS_model_cfg
)
#E2TTS_ema_model2 = load_custom(
# "hf://Gregniuki/F5-tts_English_German_Polish/Polish/model_500000.pt", "", F5TTS_model_cfg
#)
def chunk_text(text, max_chars):
"""
Splits the input text into chunks, ensuring:
- Chunks are split by punctuation where possible.
- If no punctuation is found and the chunk exceeds `split_after_space_chars`,
it is split into smaller chunks of up to `split_after_space_chars`.
Args:
text (str): The text to be split.
max_chars (int): The maximum number of characters per chunk after punctuation.
split_after_space_chars (int): The maximum number of characters per chunk when no punctuation is present.
Returns:
List[str]: A list of text chunks.
"""
if max_chars > 135:
max_chars = 135
if max_chars < 50:
max_chars = 50
split_after_space_chars = max_chars + int(max_chars * 0.33)
chunks = []
current_chunk = ""
# Split the text into sentences based on punctuation followed by whitespace
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
for sentence in sentences:
# If adding this sentence doesn't exceed max_chars, append it to the current chunk
if len(current_chunk) + len(sentence) + 1 <= max_chars: # +1 for space
current_chunk += sentence + " "
else:
# If current chunk exceeds split_after_space_chars, handle the splitting
while len(current_chunk) > split_after_space_chars:
split_index = current_chunk.rfind(" ", 0, split_after_space_chars)
if split_index == -1: # No spaces to split; force split at 135 characters
split_index = split_after_space_chars
chunks.append(current_chunk[:split_index].strip())
current_chunk = current_chunk[split_index:].strip()
# Add the current chunk to the list and start a new chunk
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " "
# If the remaining chunk exceeds split_after_space_chars, split it further
while len(current_chunk) > split_after_space_chars:
split_index = current_chunk.rfind(" ", 0, split_after_space_chars)
if split_index == -1: # No spaces to split; force split at 135 characters
split_index = split_after_space_chars
chunks.append(current_chunk[:split_index].strip())
current_chunk = current_chunk[split_index:].strip()
# Add any leftover chunk
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
def text_to_ipa(text, language=language):
try:
ipa_text = phonemize(
text,
language=language,
backend='espeak',
strip=False,
preserve_punctuation=True,
with_stress=True
)
return ipa_text #preserve_case(text, ipa_text)
except Exception as e:
print(f"Error processing text: {text}. Error: {e}")
return None
@gpu_decorator
def infer_batch(ref_audio, ref_text, gen_text_batches, exp_name, remove_silence, cross_fade_duration=0.15, progress=gr.Progress()):
if exp_name == "Multi":
ema_model = F5TTS_ema_model
# elif exp_name == "Polish":
# ema_model = E2TTS_ema_model
# elif exp_name == "Deutsch":
# ema_model = E2TTS_ema_model2
#ref_audio, ref_text = preprocess_ref_audio_text(ref_audio, ref_text, show_info=show_info)
audio, sr = ref_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(device)
tokenizer = Tokenizer.from_file("data/Emilia_ZH_EN_pinyin/tokenizer.json")
vocab_size = tokenizer.get_vocab_size()
vocab = tokenizer.get_vocab()
generated_waves = []
spectrograms = []
# Remove the last 5 chats, ensuring you don't attempt to slice beyond the list length
# ref_text = ref_text[:-3] + " " if len(ref_text) >= 3 else ref_text
# Ensure ref_text ends with a space if the last character is single-byte
# if len(ref_text[-1].encode("utf-8")) == 1:
# ref_text = ref_text + ". ."
# Define weights for characters
punctuation_weights = {",": 0, ".": 0, " ": 0} # Add more punctuation as needed
progress = tqdm(gen_text_batches)
ipa_text_ref = text_to_ipa(ref_text, language=ref_language)
print(ref_language)
print(language)
for i, gen_text in enumerate(progress):
# for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
# Prepare the text
ipa_text_gen = text_to_ipa(gen_text, language=language)
print(ipa_text_gen)
text_list = ipa_text_ref + ipa_text_gen
print(text_list)
encoding = tokenizer.encode(text_list)
tokens = encoding.tokens
text_list = ' '.join(map(str, tokens))
final_text_list = [text_list]
print(final_text_list)
# Calculate reference audio length
ref_audio_len = audio.shape[-1] // hop_length
if fix_duration is not None:
duration = int(fix_duration * target_sample_rate / hop_length)
else:
# Calculate text lengths with weights
def calculate_weighted_length(text):
length = len(text.encode("utf-8"))
additional_length = sum(punctuation_weights.get(char, 0) for char in text)
return length + additional_length
ref_text_len = calculate_weighted_length(ref_text)
gen_text_len = calculate_weighted_length(gen_text)
# Duration calculation considering global speed factor
# duration = int(ref_audio_len) + int(((ref_audio_len / ref_text_len) * gen_text_len) / speed)
duration = max(250, int(ref_audio_len) + int(((ref_audio_len / ref_text_len) * gen_text_len) / speed))
# Print the calculated duration
print(f"Chunk {i + 1}: Duration: {duration} speed {speed}")
# inference
with torch.inference_mode():
# Ensure all inputs are on the same device as ema_model
audio = audio.to(ema_model.device) # Match ema_model's device
final_text_list = [t.to(ema_model.device) if isinstance(t, torch.Tensor) else t for t in final_text_list]
generated, _ = ema_model.sample(
cond=audio,
text=final_text_list,
duration=duration,
steps=nfe_step,
cfg_strength=cfg_strength,
sway_sampling_coef=sway_sampling_coef,
)
# Process generated tensor
generated = generated[:, ref_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
# Convert to appropriate dtype and device
# generated_mel_spec = generated_mel_spec.to(dtype=torch.float16, device=vocos.device) # Ensure device matches vocos
generated_wave = vocos.decode(generated_mel_spec)
# Adjust wave RMS if needed
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
# Convert to numpy
generated_wave = generated_wave.squeeze().cpu().numpy()
# Append to list
generated_waves.append(generated_wave)
# spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Ensure generated_mel_spec is in a compatible dtype (e.g., float32) before passing it to numpy
# generated_mel_spec = generated_mel_spec.to(dtype=torch.float32) # Convert to float32 if it's in bfloat16
# Proceed with the rest of your operations
spectrograms.append(generated_mel_spec[0].cpu().numpy())
# Combine all generated waves with cross-fading
if cross_fade_duration <= 0:
# Simply concatenate
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
# No overlap possible, concatenate
final_wave = np.concatenate([prev_wave, next_wave])
continue
# Overlapping parts
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
# Fade out and fade in
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
# Cross-faded overlap
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
# Combine
new_wave = np.concatenate([
prev_wave[:-cross_fade_samples],
cross_faded_overlap,
next_wave[cross_fade_samples:]
])
final_wave = new_wave
# Remove silence
if remove_silence:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
# Convert to float32 before writing
final_wave_float32 = final_wave.astype(np.float32)
sf.write(f.name, final_wave_float32, target_sample_rate)
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
# Create a combined spectrogram
combined_spectrogram = np.concatenate(spectrograms, axis=1)
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
spectrogram_path = tmp_spectrogram.name
save_spectrogram(combined_spectrogram, spectrogram_path)
return (target_sample_rate, final_wave), spectrogram_path
@gpu_decorator
def infer(ref_audio_orig, ref_text, gen_text, exp_name, remove_silence, cross_fade_duration=0.15 # Set the desired language code dynamically
):
print(gen_text)
gr.Info("Converting audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(ref_audio_orig)
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=150)
non_silent_segs = silence.split_on_silence(
aseg, min_silence_len=700, silence_thresh=-50, keep_silence=700
)
non_silent_wave = AudioSegment.silent(duration=0)
for non_silent_seg in non_silent_segs:
non_silent_wave += non_silent_seg
aseg = non_silent_wave
audio_duration = len(aseg)
if audio_duration > 10000:
gr.Warning("Audio is over 10s, clipping to only first 10s.")
aseg = aseg[:10000]
aseg.export(f.name, format="wav")
ref_audio = f.name
if not ref_text.strip():
gr.Info("No reference text provided, transcribing reference audio...")
ref_text = pipe(
ref_audio,
chunk_length_s=15,
batch_size=128,
generate_kwargs={"task": "transcribe"# ,"language": ref_language # Use the variable here
},
return_timestamps=False,
)["text"].strip()
gr.Info("Finished transcription")
else:
gr.Info("Using custom reference text...")
# Add the functionality to ensure it ends with ". "
if not ref_text.endswith(". "):
if ref_text.endswith("."):
ref_text += " "
else:
ref_text += ". "
audio, sr = torchaudio.load(ref_audio)
# Use the new chunk_text function to split gen_text
max_chars = int((len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (20 - audio.shape[-1] / sr )))
print(f"text: {max_chars} ")
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
print('ref_text', ref_text)
for i, batch_text in enumerate(gen_text_batches):
print(f'gen_text {i}', batch_text)
gr.Info(f"Generating audio using {exp_name} in {len(gen_text_batches)} batches")
return infer_batch((audio, sr), ref_text, gen_text_batches, exp_name, remove_silence, cross_fade_duration)
@gpu_decorator
def generate_podcast(script, speaker1_name, ref_audio1, ref_text1, speaker2_name, ref_audio2, ref_text2, exp_name, remove_silence):
# Split the script into speaker blocks
speaker_pattern = re.compile(f"^({re.escape(speaker1_name)}|{re.escape(speaker2_name)}):", re.MULTILINE)
speaker_blocks = speaker_pattern.split(script)[1:] # Skip the first empty element
generated_audio_segments = []
for i in range(0, len(speaker_blocks), 2):
speaker = speaker_blocks[i]
text = speaker_blocks[i+1].strip()
# Determine which speaker is talking
if speaker == speaker1_name:
ref_audio = ref_audio1
ref_text = ref_text1
elif speaker == speaker2_name:
ref_audio = ref_audio2
ref_text = ref_text2
else:
continue # Skip if the speaker is neither speaker1 nor speaker2
# Generate audio for this block
audio, _ = infer(ref_audio, ref_text, text, exp_name, remove_silence)
# Convert the generated audio to a numpy array
sr, audio_data = audio
# Save the audio data as a WAV file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
sf.write(temp_file.name, audio_data, sr)
audio_segment = AudioSegment.from_wav(temp_file.name)
generated_audio_segments.append(audio_segment)
# Add a short pause between speakers
pause = AudioSegment.silent(duration=500) # 500ms pause
generated_audio_segments.append(pause)
# Concatenate all audio segments
final_podcast = sum(generated_audio_segments)
# Export the final podcast
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
podcast_path = temp_file.name
final_podcast.export(podcast_path, format="wav")
return podcast_path
def parse_speechtypes_text(gen_text):
# Pattern to find (Emotion)
pattern = r'\((.*?)\)'
# Split the text by the pattern
tokens = re.split(pattern, gen_text)
segments = []
current_emotion = 'Regular'
for i in range(len(tokens)):
if i % 2 == 0:
# This is text
text = tokens[i].strip()
if text:
segments.append({'emotion': current_emotion, 'text': text})
else:
# This is emotion
emotion = tokens[i].strip()
current_emotion = emotion
return segments
# Function to update language
def update_language(new_language):
global language
language = new_language
return f"Language set to: {language}"
def update_language1(new_ref_language):
global ref_language
ref_language = new_ref_language
return f"Language set to: {ref_language}"
def update_speed(new_speed):
global speed
speed = new_speed
return f"Speed set to: {speed}"
with gr.Blocks() as app_credits:
gr.Markdown("""
# Credits
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
* [RootingInLoad](https://github.com/RootingInLoad) for the podcast generation
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation
""")
with gr.Blocks() as app_tts:
gr.Markdown("# Batched TTS")
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
model_choice = gr.Radio(
choices=["Multi"], label="Choose TTS Model", value="Multi"
)
gr.Markdown("#Select Reference Language")
language_choice1 = gr.Dropdown(
choices=["af", "ar", "pl", "de", "en-us", "en-gb", "en-029", "en-gb-scotland", "ga", "gd", "uk", "ru", "cs", # Czech
"sk", # Slovak
"bg", # Bulgarian
"sr", # Serbian
"hr", # Croatian
"sl", # Slovenian
"be", # Belarusian
"lt", # Lithuanian
"lv", # Latvian
"et", # Estonian
"fi", # Finnish
"hu", # Hungarian
"sv", # Swedish
"no", # Norwegian
"da", # Danish
"is", # Icelandic
"nl", # Dutch
"fr-fr",
"es",
"pt",
"it",
"ro",
"cmn",
"ja",
"tr"
], label="Choose Language", value="en-us"
)
gr.Markdown("#Select Synthesized Language")
language_choice = gr.Dropdown(
choices=["af", "ar", "pl", "de", "en-us", "en-gb", "en-029", "en-gb-scotland", "ga", "gd", "uk", "ru", "cs", # Czech
"sk", # Slovak
"bg", # Bulgarian
"sr", # Serbian
"hr", # Croatian
"sl", # Slovenian
"be", # Belarusian
"lt", # Lithuanian
"lv", # Latvian
"et", # Estonian
"fi", # Finnish
"hu", # Hungarian
"sv", # Swedish
"no", # Norwegian
"da", # Danish
"is", # Icelandic
"nl", # Dutch
"fr-fr",
"es",
"pt",
"it",
"ro",
"cmn",
"ja",
"tr"
], label="Choose Language", value="en-us"
)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
ref_text_input = gr.Textbox(
label="Reference Text",
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
lines=2,
)
remove_silence = gr.Checkbox(
label="Remove Silences",
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
value=False,
)
speed_slider = gr.Slider(
label="Speed",
minimum=0.3,
maximum=2.0,
value=1.0, # Assuming a default speed value
step=0.1,
info="Adjust the speed of the audio.",
)
cross_fade_duration_slider = gr.Slider(
label="Cross-Fade Duration (s)",
minimum=0.0,
maximum=1.0,
value=0.15,
step=0.01,
info="Set the duration of the cross-fade between audio clips.",
)
speed_slider.change(update_speed, inputs=speed_slider)
language_choice.change(update_language, inputs=language_choice)
language_choice1.change(update_language1, inputs=language_choice1)
audio_output = gr.Audio(label="Synthesized Audio")
spectrogram_output = gr.Image(label="Spectrogram")
generate_btn.click(
infer,
inputs=[
ref_audio_input,
ref_text_input,
gen_text_input,
model_choice,
remove_silence,
cross_fade_duration_slider,
# language_choice,
],
outputs=[audio_output, spectrogram_output],
)
def parse_emotional_text(gen_text):
# Pattern to find (Emotion)
pattern = r'\((.*?)\)'
# Split the text by the pattern
tokens = re.split(pattern, gen_text)
segments = []
current_emotion = 'Regular'
for i in range(len(tokens)):
if i % 2 == 0:
# This is text
text = tokens[i].strip()
if text:
segments.append({'emotion': current_emotion, 'text': text})
else:
# This is emotion
emotion = tokens[i].strip()
current_emotion = emotion
return segments
with gr.Blocks() as app_emotional:
# New section for emotional generation
gr.Markdown(
"""
# Multiple Speech-Type Generation
This section allows you to upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the "Add Speech Type" button. Enter your text in the format shown below, and the system will generate speech using the appropriate emotions. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
**Example Input:**
(Regular) Hello, I'd like to order a sandwich please. (Surprised) What do you mean you're out of bread? (Sad) I really wanted a sandwich though... (Angry) You know what, darn you and your little shop, you suck! (Whisper) I'll just go back home and cry now. (Shouting) Why me?!
"""
)
gr.Markdown("Upload different audio clips for each speech type. 'Regular' emotion is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button.")
# Regular speech type (mandatory)
with gr.Row():
regular_name = gr.Textbox(value='Regular', label='Speech Type Name', interactive=False)
regular_audio = gr.Audio(label='Regular Reference Audio', type='filepath')
regular_ref_text = gr.Textbox(label='Reference Text (Regular)', lines=2)
# Additional speech types (up to 9 more)
max_speech_types = 10
speech_type_names = []
speech_type_audios = []
speech_type_ref_texts = []
speech_type_delete_btns = []
for i in range(max_speech_types - 1):
with gr.Row():
name_input = gr.Textbox(label='Speech Type Name', visible=False)
audio_input = gr.Audio(label='Reference Audio', type='filepath', visible=False)
ref_text_input = gr.Textbox(label='Reference Text', lines=2, visible=False)
delete_btn = gr.Button("Delete", variant="secondary", visible=False)
speech_type_names.append(name_input)
speech_type_audios.append(audio_input)
speech_type_ref_texts.append(ref_text_input)
speech_type_delete_btns.append(delete_btn)
# Button to add speech type
add_speech_type_btn = gr.Button("Add Speech Type")
# Keep track of current number of speech types
speech_type_count = gr.State(value=0)
# Function to add a speech type
def add_speech_type_fn(speech_type_count):
if speech_type_count < max_speech_types - 1:
speech_type_count += 1
# Prepare updates for the components
name_updates = []
audio_updates = []
ref_text_updates = []
delete_btn_updates = []
for i in range(max_speech_types - 1):
if i < speech_type_count:
name_updates.append(gr.update(visible=True))
audio_updates.append(gr.update(visible=True))
ref_text_updates.append(gr.update(visible=True))
delete_btn_updates.append(gr.update(visible=True))
else:
name_updates.append(gr.update())
audio_updates.append(gr.update())
ref_text_updates.append(gr.update())
delete_btn_updates.append(gr.update())
else:
# Optionally, show a warning
# gr.Warning("Maximum number of speech types reached.")
name_updates = [gr.update() for _ in range(max_speech_types - 1)]
audio_updates = [gr.update() for _ in range(max_speech_types - 1)]
ref_text_updates = [gr.update() for _ in range(max_speech_types - 1)]
delete_btn_updates = [gr.update() for _ in range(max_speech_types - 1)]
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
add_speech_type_btn.click(
add_speech_type_fn,
inputs=speech_type_count,
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
)
# Function to delete a speech type
def make_delete_speech_type_fn(index):
def delete_speech_type_fn(speech_type_count):
# Prepare updates
name_updates = []
audio_updates = []
ref_text_updates = []
delete_btn_updates = []
for i in range(max_speech_types - 1):
if i == index:
name_updates.append(gr.update(visible=False, value=''))
audio_updates.append(gr.update(visible=False, value=None))
ref_text_updates.append(gr.update(visible=False, value=''))
delete_btn_updates.append(gr.update(visible=False))
else:
name_updates.append(gr.update())
audio_updates.append(gr.update())
ref_text_updates.append(gr.update())
delete_btn_updates.append(gr.update())
speech_type_count = max(0, speech_type_count - 1)
return [speech_type_count] + name_updates + audio_updates + ref_text_updates + delete_btn_updates
return delete_speech_type_fn
for i, delete_btn in enumerate(speech_type_delete_btns):
delete_fn = make_delete_speech_type_fn(i)
delete_btn.click(
delete_fn,
inputs=speech_type_count,
outputs=[speech_type_count] + speech_type_names + speech_type_audios + speech_type_ref_texts + speech_type_delete_btns
)
# Text input for the prompt
gen_text_input_emotional = gr.Textbox(label="Text to Generate", lines=10)
# Model choice
model_choice_emotional = gr.Radio(
choices=["Multi"], label="Choose TTS Model", value="Multi"
)
with gr.Accordion("Advanced Settings", open=False):
remove_silence_emotional = gr.Checkbox(
label="Remove Silences",
value=True,
)
# Generate button
generate_emotional_btn = gr.Button("Generate Emotional Speech", variant="primary")
# Output audio
audio_output_emotional = gr.Audio(label="Synthesized Audio")
@gpu_decorator
def generate_emotional_speech(
regular_audio,
regular_ref_text,
gen_text,
*args,
):
num_additional_speech_types = max_speech_types - 1
speech_type_names_list = args[:num_additional_speech_types]
speech_type_audios_list = args[num_additional_speech_types:2 * num_additional_speech_types]
speech_type_ref_texts_list = args[2 * num_additional_speech_types:3 * num_additional_speech_types]
model_choice = args[3 * num_additional_speech_types]
remove_silence = args[3 * num_additional_speech_types + 1]
# Collect the speech types and their audios into a dict
speech_types = {'Regular': {'audio': regular_audio, 'ref_text': regular_ref_text}}
for name_input, audio_input, ref_text_input in zip(speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list):
if name_input and audio_input:
speech_types[name_input] = {'audio': audio_input, 'ref_text': ref_text_input}
# Parse the gen_text into segments
segments = parse_speechtypes_text(gen_text)
# For each segment, generate speech
generated_audio_segments = []
current_emotion = 'Regular'
for segment in segments:
emotion = segment['emotion']
text = segment['text']
if emotion in speech_types:
current_emotion = emotion
else:
# If emotion not available, default to Regular
current_emotion = 'Regular'
ref_audio = speech_types[current_emotion]['audio']
ref_text = speech_types[current_emotion].get('ref_text', '')
# Generate speech for this segment
audio, _ = infer(ref_audio, ref_text, text, model_choice, remove_silence)
sr, audio_data = audio
# generated_audio_segments.append(audio_data)
# Ensure audio_data is float32
#audio_data = audio_data.astype(np.float32)
generated_audio_segments.append(audio_data)
# Concatenate all audio segments
if generated_audio_segments:
final_audio_data = np.concatenate(generated_audio_segments)#.astype(np.float32)
return (sr, final_audio_data)
else:
gr.Warning("No audio generated.")
return None
generate_emotional_btn.click(
generate_emotional_speech,
inputs=[
regular_audio,
regular_ref_text,
gen_text_input_emotional,
] + speech_type_names + speech_type_audios + speech_type_ref_texts + [
model_choice_emotional,
remove_silence_emotional,
],
outputs=audio_output_emotional,
)
# Validation function to disable Generate button if speech types are missing
def validate_speech_types(
gen_text,
regular_name,
*args
):
num_additional_speech_types = max_speech_types - 1
speech_type_names_list = args[:num_additional_speech_types]
# Collect the speech types names
speech_types_available = set()
if regular_name:
speech_types_available.add(regular_name)
for name_input in speech_type_names_list:
if name_input:
speech_types_available.add(name_input)
# Parse the gen_text to get the speech types used
segments = parse_emotional_text(gen_text)
speech_types_in_text = set(segment['emotion'] for segment in segments)
# Check if all speech types in text are available
missing_speech_types = speech_types_in_text - speech_types_available
if missing_speech_types:
# Disable the generate button
return gr.update(interactive=False)
else:
# Enable the generate button
return gr.update(interactive=True)
gen_text_input_emotional.change(
validate_speech_types,
inputs=[gen_text_input_emotional, regular_name] + speech_type_names,
outputs=generate_emotional_btn
)
with gr.Blocks() as app:
gr.Markdown(
"""
# F5 TTS
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
The checkpoint was trained with Polish Brithis English American English German Russian Ukrainian other languages mey not work corectly.
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 10s, and shortening your prompt.
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
"""
)
gr.HTML(
"""
<a href="https://www.ko-fi.com/gregs40829" target="_blank">
<img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;">
</a>
"""
)
gr.TabbedInterface([app_tts, app_emotional, app_credits], ["TTS", "Multi-Style", "Credits"])
@click.command()
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
@click.option("--host", "-H", default=None, help="Host to run the app on")
@click.option(
"--share",
"-s",
default=False,
is_flag=True,
help="Share the app via Gradio share link",
)
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
def main(port, host, share, api):
global app
print(f"Starting app...")
app.queue(api_open=api).launch(
server_name=host, server_port=port, share=share, show_api=api
)
if __name__ == "__main__":
main() |