SakuraD commited on
Commit
fc13876
·
1 Parent(s): bce2837
Files changed (1) hide show
  1. app.py +10 -11
app.py CHANGED
@@ -48,17 +48,16 @@ def inference(img):
48
  prediction = model(image)
49
  prediction = F.softmax(prediction, dim=1).flatten()
50
 
51
- # return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
 
 
 
 
 
52
 
53
- pred_classes = prediction.topk(k=5).indices
54
- pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
55
- pred_class_probs = [prediction[0][i.item()].item() * 100 for i in pred_classes[0]]
56
- res = "Top 5 predicted labels:\n"
57
- for name, prob in zip(pred_class_names, pred_class_probs):
58
- res += f"[{prob:2.2f}%]\t{name}\n"
59
-
60
- return res
61
 
 
62
 
63
  def set_example_image(example: list) -> dict:
64
  return gr.Image.update(value=example[0])
@@ -77,11 +76,11 @@ with demo:
77
  with gr.Row():
78
  with gr.Column():
79
  with gr.Row():
80
- input_image = gr.Image(label='Input Image', type='file')
81
  with gr.Row():
82
  submit_button = gr.Button('Submit')
83
  with gr.Column():
84
- label = gr.Label()
85
  with gr.Row():
86
  example_images = gr.Dataset(components=[input_image], samples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']])
87
 
 
48
  prediction = model(image)
49
  prediction = F.softmax(prediction, dim=1).flatten()
50
 
51
+ # pred_classes = prediction.topk(k=5).indices
52
+ # pred_class_names = [imagenet_id_to_classname[str(i.item())] for i in pred_classes[0]]
53
+ # pred_class_probs = [prediction[0][i.item()].item() * 100 for i in pred_classes[0]]
54
+ # res = "Top 5 predicted labels:\n"
55
+ # for name, prob in zip(pred_class_names, pred_class_probs):
56
+ # res += f"[{prob:2.2f}%]\t{name}\n"
57
 
58
+ # return res
 
 
 
 
 
 
 
59
 
60
+ return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
61
 
62
  def set_example_image(example: list) -> dict:
63
  return gr.Image.update(value=example[0])
 
76
  with gr.Row():
77
  with gr.Column():
78
  with gr.Row():
79
+ input_image = gr.Image(label='Input Image', type='numpy')
80
  with gr.Row():
81
  submit_button = gr.Button('Submit')
82
  with gr.Column():
83
+ label = gr.Label(num_top_classes=5)
84
  with gr.Row():
85
  example_images = gr.Dataset(components=[input_image], samples=[['library.jpeg'], ['cat.png'], ['dog.png'], ['panda.png']])
86