#!/usr/bin/env python from __future__ import annotations import pathlib import gradio as gr from model import Model DESCRIPTION = '# [CBNetV2](https://github.com/VDIGPKU/CBNetV2)' model = Model() with gr.Blocks(css='style.css') as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label='Input Image', type='numpy') with gr.Row(): detector_name = gr.Dropdown(label='Detector', choices=list(model.models.keys()), value=model.model_name) with gr.Row(): detect_button = gr.Button('Detect') detection_results = gr.Variable() with gr.Column(): with gr.Row(): detection_visualization = gr.Image(label='Detection Result', type='numpy') with gr.Row(): visualization_score_threshold = gr.Slider( label='Visualization Score Threshold', minimum=0, maximum=1, step=0.05, value=0.3) with gr.Row(): redraw_button = gr.Button('Redraw') with gr.Row(): paths = sorted(pathlib.Path('images').rglob('*.jpg')) gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) detector_name.change(fn=model.set_model_name, inputs=[detector_name], outputs=None) detect_button.click(fn=model.detect_and_visualize, inputs=[ input_image, visualization_score_threshold, ], outputs=[ detection_results, detection_visualization, ]) redraw_button.click(fn=model.visualize_detection_results, inputs=[ input_image, detection_results, visualization_score_threshold, ], outputs=[detection_visualization]) demo.queue(max_size=10).launch()