File size: 14,218 Bytes
db4a26f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Copyright (c) 2024 Microsoft Corporation.\n",
    "# Licensed under the MIT License."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "import pandas as pd\n",
    "import tiktoken\n",
    "\n",
    "from graphrag.query.context_builder.entity_extraction import EntityVectorStoreKey\n",
    "from graphrag.query.indexer_adapters import (\n",
    "    read_indexer_covariates,\n",
    "    read_indexer_entities,\n",
    "    read_indexer_relationships,\n",
    "    read_indexer_reports,\n",
    "    read_indexer_text_units,\n",
    ")\n",
    "from graphrag.query.input.loaders.dfs import (\n",
    "    store_entity_semantic_embeddings,\n",
    ")\n",
    "from graphrag.query.llm.oai.chat_openai import ChatOpenAI\n",
    "from graphrag.query.llm.oai.embedding import OpenAIEmbedding\n",
    "from graphrag.query.llm.oai.typing import OpenaiApiType\n",
    "from graphrag.query.question_gen.local_gen import LocalQuestionGen\n",
    "from graphrag.query.structured_search.local_search.mixed_context import (\n",
    "    LocalSearchMixedContext,\n",
    ")\n",
    "from graphrag.query.structured_search.local_search.search import LocalSearch\n",
    "from graphrag.vector_stores.lancedb import LanceDBVectorStore"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Local Search Example\n",
    "\n",
    "Local search method generates answers by combining relevant data from the AI-extracted knowledge-graph with text chunks of the raw documents. This method is suitable for questions that require an understanding of specific entities mentioned in the documents (e.g. What are the healing properties of chamomile?)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load text units and graph data tables as context for local search\n",
    "\n",
    "- In this test we first load indexing outputs from parquet files to dataframes, then convert these dataframes into collections of data objects aligning with the knowledge model."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load tables to dataframes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "INPUT_DIR = \"./inputs/operation dulce\"\n",
    "LANCEDB_URI = f\"{INPUT_DIR}/lancedb\"\n",
    "\n",
    "COMMUNITY_REPORT_TABLE = \"create_final_community_reports\"\n",
    "ENTITY_TABLE = \"create_final_nodes\"\n",
    "ENTITY_EMBEDDING_TABLE = \"create_final_entities\"\n",
    "RELATIONSHIP_TABLE = \"create_final_relationships\"\n",
    "COVARIATE_TABLE = \"create_final_covariates\"\n",
    "TEXT_UNIT_TABLE = \"create_final_text_units\"\n",
    "COMMUNITY_LEVEL = 2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Read entities"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# read nodes table to get community and degree data\n",
    "entity_df = pd.read_parquet(f\"{INPUT_DIR}/{ENTITY_TABLE}.parquet\")\n",
    "entity_embedding_df = pd.read_parquet(f\"{INPUT_DIR}/{ENTITY_EMBEDDING_TABLE}.parquet\")\n",
    "\n",
    "entities = read_indexer_entities(entity_df, entity_embedding_df, COMMUNITY_LEVEL)\n",
    "\n",
    "# load description embeddings to an in-memory lancedb vectorstore\n",
    "# to connect to a remote db, specify url and port values.\n",
    "description_embedding_store = LanceDBVectorStore(\n",
    "    collection_name=\"entity_description_embeddings\",\n",
    ")\n",
    "description_embedding_store.connect(db_uri=LANCEDB_URI)\n",
    "entity_description_embeddings = store_entity_semantic_embeddings(\n",
    "    entities=entities, vectorstore=description_embedding_store\n",
    ")\n",
    "\n",
    "print(f\"Entity count: {len(entity_df)}\")\n",
    "entity_df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Read relationships"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "relationship_df = pd.read_parquet(f\"{INPUT_DIR}/{RELATIONSHIP_TABLE}.parquet\")\n",
    "relationships = read_indexer_relationships(relationship_df)\n",
    "\n",
    "print(f\"Relationship count: {len(relationship_df)}\")\n",
    "relationship_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "covariate_df = pd.read_parquet(f\"{INPUT_DIR}/{COVARIATE_TABLE}.parquet\")\n",
    "\n",
    "claims = read_indexer_covariates(covariate_df)\n",
    "\n",
    "print(f\"Claim records: {len(claims)}\")\n",
    "covariates = {\"claims\": claims}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Read community reports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "report_df = pd.read_parquet(f\"{INPUT_DIR}/{COMMUNITY_REPORT_TABLE}.parquet\")\n",
    "reports = read_indexer_reports(report_df, entity_df, COMMUNITY_LEVEL)\n",
    "\n",
    "print(f\"Report records: {len(report_df)}\")\n",
    "report_df.head()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Read text units"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_unit_df = pd.read_parquet(f\"{INPUT_DIR}/{TEXT_UNIT_TABLE}.parquet\")\n",
    "text_units = read_indexer_text_units(text_unit_df)\n",
    "\n",
    "print(f\"Text unit records: {len(text_unit_df)}\")\n",
    "text_unit_df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "api_key = os.environ[\"GRAPHRAG_API_KEY\"]\n",
    "llm_model = os.environ[\"GRAPHRAG_LLM_MODEL\"]\n",
    "embedding_model = os.environ[\"GRAPHRAG_EMBEDDING_MODEL\"]\n",
    "\n",
    "llm = ChatOpenAI(\n",
    "    api_key=api_key,\n",
    "    model=llm_model,\n",
    "    api_type=OpenaiApiType.OpenAI,  # OpenaiApiType.OpenAI or OpenaiApiType.AzureOpenAI\n",
    "    max_retries=20,\n",
    ")\n",
    "\n",
    "token_encoder = tiktoken.get_encoding(\"cl100k_base\")\n",
    "\n",
    "text_embedder = OpenAIEmbedding(\n",
    "    api_key=api_key,\n",
    "    api_base=None,\n",
    "    api_type=OpenaiApiType.OpenAI,\n",
    "    model=embedding_model,\n",
    "    deployment_name=embedding_model,\n",
    "    max_retries=20,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create local search context builder"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "context_builder = LocalSearchMixedContext(\n",
    "    community_reports=reports,\n",
    "    text_units=text_units,\n",
    "    entities=entities,\n",
    "    relationships=relationships,\n",
    "    covariates=covariates,\n",
    "    entity_text_embeddings=description_embedding_store,\n",
    "    embedding_vectorstore_key=EntityVectorStoreKey.ID,  # if the vectorstore uses entity title as ids, set this to EntityVectorStoreKey.TITLE\n",
    "    text_embedder=text_embedder,\n",
    "    token_encoder=token_encoder,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Create local search engine"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# text_unit_prop: proportion of context window dedicated to related text units\n",
    "# community_prop: proportion of context window dedicated to community reports.\n",
    "# The remaining proportion is dedicated to entities and relationships. Sum of text_unit_prop and community_prop should be <= 1\n",
    "# conversation_history_max_turns: maximum number of turns to include in the conversation history.\n",
    "# conversation_history_user_turns_only: if True, only include user queries in the conversation history.\n",
    "# top_k_mapped_entities: number of related entities to retrieve from the entity description embedding store.\n",
    "# top_k_relationships: control the number of out-of-network relationships to pull into the context window.\n",
    "# include_entity_rank: if True, include the entity rank in the entity table in the context window. Default entity rank = node degree.\n",
    "# include_relationship_weight: if True, include the relationship weight in the context window.\n",
    "# include_community_rank: if True, include the community rank in the context window.\n",
    "# return_candidate_context: if True, return a set of dataframes containing all candidate entity/relationship/covariate records that\n",
    "# could be relevant. Note that not all of these records will be included in the context window. The \"in_context\" column in these\n",
    "# dataframes indicates whether the record is included in the context window.\n",
    "# max_tokens: maximum number of tokens to use for the context window.\n",
    "\n",
    "\n",
    "local_context_params = {\n",
    "    \"text_unit_prop\": 0.5,\n",
    "    \"community_prop\": 0.1,\n",
    "    \"conversation_history_max_turns\": 5,\n",
    "    \"conversation_history_user_turns_only\": True,\n",
    "    \"top_k_mapped_entities\": 10,\n",
    "    \"top_k_relationships\": 10,\n",
    "    \"include_entity_rank\": True,\n",
    "    \"include_relationship_weight\": True,\n",
    "    \"include_community_rank\": False,\n",
    "    \"return_candidate_context\": False,\n",
    "    \"embedding_vectorstore_key\": EntityVectorStoreKey.ID,  # set this to EntityVectorStoreKey.TITLE if the vectorstore uses entity title as ids\n",
    "    \"max_tokens\": 12_000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 5000)\n",
    "}\n",
    "\n",
    "llm_params = {\n",
    "    \"max_tokens\": 2_000,  # change this based on the token limit you have on your model (if you are using a model with 8k limit, a good setting could be 1000=1500)\n",
    "    \"temperature\": 0.0,\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "search_engine = LocalSearch(\n",
    "    llm=llm,\n",
    "    context_builder=context_builder,\n",
    "    token_encoder=token_encoder,\n",
    "    llm_params=llm_params,\n",
    "    context_builder_params=local_context_params,\n",
    "    response_type=\"multiple paragraphs\",  # free form text describing the response type and format, can be anything, e.g. prioritized list, single paragraph, multiple paragraphs, multiple-page report\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Run local search on sample queries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result = await search_engine.asearch(\"Tell me about Agent Mercer\")\n",
    "print(result.response)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "question = \"Tell me about Dr. Jordan Hayes\"\n",
    "result = await search_engine.asearch(question)\n",
    "print(result.response)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Inspecting the context data used to generate the response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result.context_data[\"entities\"].head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result.context_data[\"relationships\"].head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result.context_data[\"reports\"].head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "result.context_data[\"sources\"].head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "if \"claims\" in result.context_data:\n",
    "    print(result.context_data[\"claims\"].head())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Question Generation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This function takes a list of user queries and generates the next candidate questions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "question_generator = LocalQuestionGen(\n",
    "    llm=llm,\n",
    "    context_builder=context_builder,\n",
    "    token_encoder=token_encoder,\n",
    "    llm_params=llm_params,\n",
    "    context_builder_params=local_context_params,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "question_history = [\n",
    "    \"Tell me about Agent Mercer\",\n",
    "    \"What happens in Dulce military base?\",\n",
    "]\n",
    "candidate_questions = await question_generator.agenerate(\n",
    "    question_history=question_history, context_data=None, question_count=5\n",
    ")\n",
    "print(candidate_questions.response)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}