Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import contextlib | |
| import copy | |
| import io | |
| import itertools | |
| import json | |
| import logging | |
| import numpy as np | |
| import os | |
| import pickle | |
| from collections import OrderedDict | |
| import pycocotools.mask as mask_util | |
| import torch | |
| from pycocotools.coco import COCO | |
| from pycocotools.cocoeval import COCOeval | |
| from tabulate import tabulate | |
| import detectron2.utils.comm as comm | |
| from detectron2.config import CfgNode | |
| from detectron2.data import MetadataCatalog | |
| from detectron2.data.datasets.coco import convert_to_coco_json | |
| from detectron2.structures import Boxes, BoxMode, pairwise_iou | |
| from detectron2.utils.file_io import PathManager | |
| from detectron2.utils.logger import create_small_table | |
| from .evaluator import DatasetEvaluator | |
| try: | |
| from detectron2.evaluation.fast_eval_api import COCOeval_opt | |
| except ImportError: | |
| COCOeval_opt = COCOeval | |
| class COCOEvaluator(DatasetEvaluator): | |
| """ | |
| Evaluate AR for object proposals, AP for instance detection/segmentation, AP | |
| for keypoint detection outputs using COCO's metrics. | |
| See http://cocodataset.org/#detection-eval and | |
| http://cocodataset.org/#keypoints-eval to understand its metrics. | |
| The metrics range from 0 to 100 (instead of 0 to 1), where a -1 or NaN means | |
| the metric cannot be computed (e.g. due to no predictions made). | |
| In addition to COCO, this evaluator is able to support any bounding box detection, | |
| instance segmentation, or keypoint detection dataset. | |
| """ | |
| def __init__( | |
| self, | |
| dataset_name, | |
| tasks=None, | |
| distributed=True, | |
| output_dir=None, | |
| *, | |
| max_dets_per_image=None, | |
| use_fast_impl=True, | |
| kpt_oks_sigmas=(), | |
| allow_cached_coco=True, | |
| ): | |
| """ | |
| Args: | |
| dataset_name (str): name of the dataset to be evaluated. | |
| It must have either the following corresponding metadata: | |
| "json_file": the path to the COCO format annotation | |
| Or it must be in detectron2's standard dataset format | |
| so it can be converted to COCO format automatically. | |
| tasks (tuple[str]): tasks that can be evaluated under the given | |
| configuration. A task is one of "bbox", "segm", "keypoints". | |
| By default, will infer this automatically from predictions. | |
| distributed (True): if True, will collect results from all ranks and run evaluation | |
| in the main process. | |
| Otherwise, will only evaluate the results in the current process. | |
| output_dir (str): optional, an output directory to dump all | |
| results predicted on the dataset. The dump contains two files: | |
| 1. "instances_predictions.pth" a file that can be loaded with `torch.load` and | |
| contains all the results in the format they are produced by the model. | |
| 2. "coco_instances_results.json" a json file in COCO's result format. | |
| max_dets_per_image (int): limit on the maximum number of detections per image. | |
| By default in COCO, this limit is to 100, but this can be customized | |
| to be greater, as is needed in evaluation metrics AP fixed and AP pool | |
| (see https://arxiv.org/pdf/2102.01066.pdf) | |
| This doesn't affect keypoint evaluation. | |
| use_fast_impl (bool): use a fast but **unofficial** implementation to compute AP. | |
| Although the results should be very close to the official implementation in COCO | |
| API, it is still recommended to compute results with the official API for use in | |
| papers. The faster implementation also uses more RAM. | |
| kpt_oks_sigmas (list[float]): The sigmas used to calculate keypoint OKS. | |
| See http://cocodataset.org/#keypoints-eval | |
| When empty, it will use the defaults in COCO. | |
| Otherwise it should be the same length as ROI_KEYPOINT_HEAD.NUM_KEYPOINTS. | |
| allow_cached_coco (bool): Whether to use cached coco json from previous validation | |
| runs. You should set this to False if you need to use different validation data. | |
| Defaults to True. | |
| """ | |
| self._logger = logging.getLogger(__name__) | |
| self._distributed = distributed | |
| self._output_dir = output_dir | |
| if use_fast_impl and (COCOeval_opt is COCOeval): | |
| self._logger.info("Fast COCO eval is not built. Falling back to official COCO eval.") | |
| use_fast_impl = False | |
| self._use_fast_impl = use_fast_impl | |
| # COCOeval requires the limit on the number of detections per image (maxDets) to be a list | |
| # with at least 3 elements. The default maxDets in COCOeval is [1, 10, 100], in which the | |
| # 3rd element (100) is used as the limit on the number of detections per image when | |
| # evaluating AP. COCOEvaluator expects an integer for max_dets_per_image, so for COCOeval, | |
| # we reformat max_dets_per_image into [1, 10, max_dets_per_image], based on the defaults. | |
| if max_dets_per_image is None: | |
| max_dets_per_image = [1, 10, 100] | |
| else: | |
| max_dets_per_image = [1, 10, max_dets_per_image] | |
| self._max_dets_per_image = max_dets_per_image | |
| if tasks is not None and isinstance(tasks, CfgNode): | |
| kpt_oks_sigmas = ( | |
| tasks.TEST.KEYPOINT_OKS_SIGMAS if not kpt_oks_sigmas else kpt_oks_sigmas | |
| ) | |
| self._logger.warn( | |
| "COCO Evaluator instantiated using config, this is deprecated behavior." | |
| " Please pass in explicit arguments instead." | |
| ) | |
| self._tasks = None # Infering it from predictions should be better | |
| else: | |
| self._tasks = tasks | |
| self._cpu_device = torch.device("cpu") | |
| self._metadata = MetadataCatalog.get(dataset_name) | |
| if not hasattr(self._metadata, "json_file"): | |
| if output_dir is None: | |
| raise ValueError( | |
| "output_dir must be provided to COCOEvaluator " | |
| "for datasets not in COCO format." | |
| ) | |
| self._logger.info(f"Trying to convert '{dataset_name}' to COCO format ...") | |
| cache_path = os.path.join(output_dir, f"{dataset_name}_coco_format.json") | |
| self._metadata.json_file = cache_path | |
| convert_to_coco_json(dataset_name, cache_path, allow_cached=allow_cached_coco) | |
| json_file = PathManager.get_local_path(self._metadata.json_file) | |
| with contextlib.redirect_stdout(io.StringIO()): | |
| self._coco_api = COCO(json_file) | |
| # Test set json files do not contain annotations (evaluation must be | |
| # performed using the COCO evaluation server). | |
| self._do_evaluation = "annotations" in self._coco_api.dataset | |
| if self._do_evaluation: | |
| self._kpt_oks_sigmas = kpt_oks_sigmas | |
| def reset(self): | |
| self._predictions = [] | |
| def process(self, inputs, outputs): | |
| """ | |
| Args: | |
| inputs: the inputs to a COCO model (e.g., GeneralizedRCNN). | |
| It is a list of dict. Each dict corresponds to an image and | |
| contains keys like "height", "width", "file_name", "image_id". | |
| outputs: the outputs of a COCO model. It is a list of dicts with key | |
| "instances" that contains :class:`Instances`. | |
| """ | |
| for input, output in zip(inputs, outputs): | |
| prediction = {"image_id": input["image_id"]} | |
| if "instances" in output: | |
| instances = output["instances"].to(self._cpu_device) | |
| prediction["instances"] = instances_to_coco_json(instances, input["image_id"]) | |
| if "proposals" in output: | |
| prediction["proposals"] = output["proposals"].to(self._cpu_device) | |
| if len(prediction) > 1: | |
| self._predictions.append(prediction) | |
| def evaluate(self, img_ids=None): | |
| """ | |
| Args: | |
| img_ids: a list of image IDs to evaluate on. Default to None for the whole dataset | |
| """ | |
| if self._distributed: | |
| comm.synchronize() | |
| predictions = comm.gather(self._predictions, dst=0) | |
| predictions = list(itertools.chain(*predictions)) | |
| if not comm.is_main_process(): | |
| return {} | |
| else: | |
| predictions = self._predictions | |
| if len(predictions) == 0: | |
| self._logger.warning("[COCOEvaluator] Did not receive valid predictions.") | |
| return {} | |
| if self._output_dir: | |
| PathManager.mkdirs(self._output_dir) | |
| file_path = os.path.join(self._output_dir, "instances_predictions.pth") | |
| with PathManager.open(file_path, "wb") as f: | |
| torch.save(predictions, f) | |
| self._results = OrderedDict() | |
| if "proposals" in predictions[0]: | |
| self._eval_box_proposals(predictions) | |
| if "instances" in predictions[0]: | |
| self._eval_predictions(predictions, img_ids=img_ids) | |
| # Copy so the caller can do whatever with results | |
| return copy.deepcopy(self._results) | |
| def _tasks_from_predictions(self, predictions): | |
| """ | |
| Get COCO API "tasks" (i.e. iou_type) from COCO-format predictions. | |
| """ | |
| tasks = {"bbox"} | |
| for pred in predictions: | |
| if "segmentation" in pred: | |
| tasks.add("segm") | |
| if "keypoints" in pred: | |
| tasks.add("keypoints") | |
| return sorted(tasks) | |
| def _eval_predictions(self, predictions, img_ids=None): | |
| """ | |
| Evaluate predictions. Fill self._results with the metrics of the tasks. | |
| """ | |
| self._logger.info("Preparing results for COCO format ...") | |
| coco_results = list(itertools.chain(*[x["instances"] for x in predictions])) | |
| tasks = self._tasks or self._tasks_from_predictions(coco_results) | |
| # unmap the category ids for COCO | |
| if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"): | |
| dataset_id_to_contiguous_id = self._metadata.thing_dataset_id_to_contiguous_id | |
| all_contiguous_ids = list(dataset_id_to_contiguous_id.values()) | |
| num_classes = len(all_contiguous_ids) | |
| assert min(all_contiguous_ids) == 0 and max(all_contiguous_ids) == num_classes - 1 | |
| reverse_id_mapping = {v: k for k, v in dataset_id_to_contiguous_id.items()} | |
| for result in coco_results: | |
| category_id = result["category_id"] | |
| assert category_id < num_classes, ( | |
| f"A prediction has class={category_id}, " | |
| f"but the dataset only has {num_classes} classes and " | |
| f"predicted class id should be in [0, {num_classes - 1}]." | |
| ) | |
| result["category_id"] = reverse_id_mapping[category_id] | |
| if self._output_dir: | |
| file_path = os.path.join(self._output_dir, "coco_instances_results.json") | |
| self._logger.info("Saving results to {}".format(file_path)) | |
| with PathManager.open(file_path, "w") as f: | |
| f.write(json.dumps(coco_results)) | |
| f.flush() | |
| if not self._do_evaluation: | |
| self._logger.info("Annotations are not available for evaluation.") | |
| return | |
| self._logger.info( | |
| "Evaluating predictions with {} COCO API...".format( | |
| "unofficial" if self._use_fast_impl else "official" | |
| ) | |
| ) | |
| for task in sorted(tasks): | |
| assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!" | |
| coco_eval = ( | |
| _evaluate_predictions_on_coco( | |
| self._coco_api, | |
| coco_results, | |
| task, | |
| kpt_oks_sigmas=self._kpt_oks_sigmas, | |
| cocoeval_fn=COCOeval_opt if self._use_fast_impl else COCOeval, | |
| img_ids=img_ids, | |
| max_dets_per_image=self._max_dets_per_image, | |
| ) | |
| if len(coco_results) > 0 | |
| else None # cocoapi does not handle empty results very well | |
| ) | |
| res = self._derive_coco_results( | |
| coco_eval, task, class_names=self._metadata.get("thing_classes") | |
| ) | |
| self._results[task] = res | |
| def _eval_box_proposals(self, predictions): | |
| """ | |
| Evaluate the box proposals in predictions. | |
| Fill self._results with the metrics for "box_proposals" task. | |
| """ | |
| if self._output_dir: | |
| # Saving generated box proposals to file. | |
| # Predicted box_proposals are in XYXY_ABS mode. | |
| bbox_mode = BoxMode.XYXY_ABS.value | |
| ids, boxes, objectness_logits = [], [], [] | |
| for prediction in predictions: | |
| ids.append(prediction["image_id"]) | |
| boxes.append(prediction["proposals"].proposal_boxes.tensor.numpy()) | |
| objectness_logits.append(prediction["proposals"].objectness_logits.numpy()) | |
| proposal_data = { | |
| "boxes": boxes, | |
| "objectness_logits": objectness_logits, | |
| "ids": ids, | |
| "bbox_mode": bbox_mode, | |
| } | |
| with PathManager.open(os.path.join(self._output_dir, "box_proposals.pkl"), "wb") as f: | |
| pickle.dump(proposal_data, f) | |
| if not self._do_evaluation: | |
| self._logger.info("Annotations are not available for evaluation.") | |
| return | |
| self._logger.info("Evaluating bbox proposals ...") | |
| res = {} | |
| areas = {"all": "", "small": "s", "medium": "m", "large": "l"} | |
| for limit in [100, 1000]: | |
| for area, suffix in areas.items(): | |
| stats = _evaluate_box_proposals(predictions, self._coco_api, area=area, limit=limit) | |
| key = "AR{}@{:d}".format(suffix, limit) | |
| res[key] = float(stats["ar"].item() * 100) | |
| self._logger.info("Proposal metrics: \n" + create_small_table(res)) | |
| self._results["box_proposals"] = res | |
| def _derive_coco_results(self, coco_eval, iou_type, class_names=None): | |
| """ | |
| Derive the desired score numbers from summarized COCOeval. | |
| Args: | |
| coco_eval (None or COCOEval): None represents no predictions from model. | |
| iou_type (str): | |
| class_names (None or list[str]): if provided, will use it to predict | |
| per-category AP. | |
| Returns: | |
| a dict of {metric name: score} | |
| """ | |
| metrics = { | |
| "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], | |
| "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], | |
| "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], | |
| }[iou_type] | |
| if coco_eval is None: | |
| self._logger.warn("No predictions from the model!") | |
| return {metric: float("nan") for metric in metrics} | |
| # the standard metrics | |
| results = { | |
| metric: float(coco_eval.stats[idx] * 100 if coco_eval.stats[idx] >= 0 else "nan") | |
| for idx, metric in enumerate(metrics) | |
| } | |
| self._logger.info( | |
| "Evaluation results for {}: \n".format(iou_type) + create_small_table(results) | |
| ) | |
| if not np.isfinite(sum(results.values())): | |
| self._logger.info("Some metrics cannot be computed and is shown as NaN.") | |
| if class_names is None or len(class_names) <= 1: | |
| return results | |
| # Compute per-category AP | |
| # from https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L222-L252 # noqa | |
| precisions = coco_eval.eval["precision"] | |
| # precision has dims (iou, recall, cls, area range, max dets) | |
| assert len(class_names) == precisions.shape[2] | |
| results_per_category = [] | |
| for idx, name in enumerate(class_names): | |
| # area range index 0: all area ranges | |
| # max dets index -1: typically 100 per image | |
| precision = precisions[:, :, idx, 0, -1] | |
| precision = precision[precision > -1] | |
| ap = np.mean(precision) if precision.size else float("nan") | |
| results_per_category.append(("{}".format(name), float(ap * 100))) | |
| # tabulate it | |
| N_COLS = min(6, len(results_per_category) * 2) | |
| results_flatten = list(itertools.chain(*results_per_category)) | |
| results_2d = itertools.zip_longest(*[results_flatten[i::N_COLS] for i in range(N_COLS)]) | |
| table = tabulate( | |
| results_2d, | |
| tablefmt="pipe", | |
| floatfmt=".3f", | |
| headers=["category", "AP"] * (N_COLS // 2), | |
| numalign="left", | |
| ) | |
| self._logger.info("Per-category {} AP: \n".format(iou_type) + table) | |
| results.update({"AP-" + name: ap for name, ap in results_per_category}) | |
| return results | |
| def instances_to_coco_json(instances, img_id): | |
| """ | |
| Dump an "Instances" object to a COCO-format json that's used for evaluation. | |
| Args: | |
| instances (Instances): | |
| img_id (int): the image id | |
| Returns: | |
| list[dict]: list of json annotations in COCO format. | |
| """ | |
| num_instance = len(instances) | |
| if num_instance == 0: | |
| return [] | |
| boxes = instances.pred_boxes.tensor.numpy() | |
| boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS) | |
| boxes = boxes.tolist() | |
| scores = instances.scores.tolist() | |
| classes = instances.pred_classes.tolist() | |
| has_mask = instances.has("pred_masks") | |
| if has_mask: | |
| # use RLE to encode the masks, because they are too large and takes memory | |
| # since this evaluator stores outputs of the entire dataset | |
| rles = [ | |
| mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0] | |
| for mask in instances.pred_masks | |
| ] | |
| for rle in rles: | |
| # "counts" is an array encoded by mask_util as a byte-stream. Python3's | |
| # json writer which always produces strings cannot serialize a bytestream | |
| # unless you decode it. Thankfully, utf-8 works out (which is also what | |
| # the pycocotools/_mask.pyx does). | |
| rle["counts"] = rle["counts"].decode("utf-8") | |
| has_keypoints = instances.has("pred_keypoints") | |
| if has_keypoints: | |
| keypoints = instances.pred_keypoints | |
| results = [] | |
| for k in range(num_instance): | |
| result = { | |
| "image_id": img_id, | |
| "category_id": classes[k], | |
| "bbox": boxes[k], | |
| "score": scores[k], | |
| } | |
| if has_mask: | |
| result["segmentation"] = rles[k] | |
| if has_keypoints: | |
| # In COCO annotations, | |
| # keypoints coordinates are pixel indices. | |
| # However our predictions are floating point coordinates. | |
| # Therefore we subtract 0.5 to be consistent with the annotation format. | |
| # This is the inverse of data loading logic in `datasets/coco.py`. | |
| keypoints[k][:, :2] -= 0.5 | |
| result["keypoints"] = keypoints[k].flatten().tolist() | |
| results.append(result) | |
| return results | |
| # inspired from Detectron: | |
| # https://github.com/facebookresearch/Detectron/blob/a6a835f5b8208c45d0dce217ce9bbda915f44df7/detectron/datasets/json_dataset_evaluator.py#L255 # noqa | |
| def _evaluate_box_proposals(dataset_predictions, coco_api, thresholds=None, area="all", limit=None): | |
| """ | |
| Evaluate detection proposal recall metrics. This function is a much | |
| faster alternative to the official COCO API recall evaluation code. However, | |
| it produces slightly different results. | |
| """ | |
| # Record max overlap value for each gt box | |
| # Return vector of overlap values | |
| areas = { | |
| "all": 0, | |
| "small": 1, | |
| "medium": 2, | |
| "large": 3, | |
| "96-128": 4, | |
| "128-256": 5, | |
| "256-512": 6, | |
| "512-inf": 7, | |
| } | |
| area_ranges = [ | |
| [0**2, 1e5**2], # all | |
| [0**2, 32**2], # small | |
| [32**2, 96**2], # medium | |
| [96**2, 1e5**2], # large | |
| [96**2, 128**2], # 96-128 | |
| [128**2, 256**2], # 128-256 | |
| [256**2, 512**2], # 256-512 | |
| [512**2, 1e5**2], | |
| ] # 512-inf | |
| assert area in areas, "Unknown area range: {}".format(area) | |
| area_range = area_ranges[areas[area]] | |
| gt_overlaps = [] | |
| num_pos = 0 | |
| for prediction_dict in dataset_predictions: | |
| predictions = prediction_dict["proposals"] | |
| # sort predictions in descending order | |
| # TODO maybe remove this and make it explicit in the documentation | |
| inds = predictions.objectness_logits.sort(descending=True)[1] | |
| predictions = predictions[inds] | |
| ann_ids = coco_api.getAnnIds(imgIds=prediction_dict["image_id"]) | |
| anno = coco_api.loadAnns(ann_ids) | |
| gt_boxes = [ | |
| BoxMode.convert(obj["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS) | |
| for obj in anno | |
| if obj["iscrowd"] == 0 | |
| ] | |
| gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes | |
| gt_boxes = Boxes(gt_boxes) | |
| gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) | |
| if len(gt_boxes) == 0 or len(predictions) == 0: | |
| continue | |
| valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) | |
| gt_boxes = gt_boxes[valid_gt_inds] | |
| num_pos += len(gt_boxes) | |
| if len(gt_boxes) == 0: | |
| continue | |
| if limit is not None and len(predictions) > limit: | |
| predictions = predictions[:limit] | |
| overlaps = pairwise_iou(predictions.proposal_boxes, gt_boxes) | |
| _gt_overlaps = torch.zeros(len(gt_boxes)) | |
| for j in range(min(len(predictions), len(gt_boxes))): | |
| # find which proposal box maximally covers each gt box | |
| # and get the iou amount of coverage for each gt box | |
| max_overlaps, argmax_overlaps = overlaps.max(dim=0) | |
| # find which gt box is 'best' covered (i.e. 'best' = most iou) | |
| gt_ovr, gt_ind = max_overlaps.max(dim=0) | |
| assert gt_ovr >= 0 | |
| # find the proposal box that covers the best covered gt box | |
| box_ind = argmax_overlaps[gt_ind] | |
| # record the iou coverage of this gt box | |
| _gt_overlaps[j] = overlaps[box_ind, gt_ind] | |
| assert _gt_overlaps[j] == gt_ovr | |
| # mark the proposal box and the gt box as used | |
| overlaps[box_ind, :] = -1 | |
| overlaps[:, gt_ind] = -1 | |
| # append recorded iou coverage level | |
| gt_overlaps.append(_gt_overlaps) | |
| gt_overlaps = ( | |
| torch.cat(gt_overlaps, dim=0) if len(gt_overlaps) else torch.zeros(0, dtype=torch.float32) | |
| ) | |
| gt_overlaps, _ = torch.sort(gt_overlaps) | |
| if thresholds is None: | |
| step = 0.05 | |
| thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) | |
| recalls = torch.zeros_like(thresholds) | |
| # compute recall for each iou threshold | |
| for i, t in enumerate(thresholds): | |
| recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) | |
| # ar = 2 * np.trapz(recalls, thresholds) | |
| ar = recalls.mean() | |
| return { | |
| "ar": ar, | |
| "recalls": recalls, | |
| "thresholds": thresholds, | |
| "gt_overlaps": gt_overlaps, | |
| "num_pos": num_pos, | |
| } | |
| def _evaluate_predictions_on_coco( | |
| coco_gt, | |
| coco_results, | |
| iou_type, | |
| kpt_oks_sigmas=None, | |
| cocoeval_fn=COCOeval_opt, | |
| img_ids=None, | |
| max_dets_per_image=None, | |
| ): | |
| """ | |
| Evaluate the coco results using COCOEval API. | |
| """ | |
| assert len(coco_results) > 0 | |
| if iou_type == "segm": | |
| coco_results = copy.deepcopy(coco_results) | |
| # When evaluating mask AP, if the results contain bbox, cocoapi will | |
| # use the box area as the area of the instance, instead of the mask area. | |
| # This leads to a different definition of small/medium/large. | |
| # We remove the bbox field to let mask AP use mask area. | |
| for c in coco_results: | |
| c.pop("bbox", None) | |
| coco_dt = coco_gt.loadRes(coco_results) | |
| coco_eval = cocoeval_fn(coco_gt, coco_dt, iou_type) | |
| # For COCO, the default max_dets_per_image is [1, 10, 100]. | |
| if max_dets_per_image is None: | |
| max_dets_per_image = [1, 10, 100] # Default from COCOEval | |
| else: | |
| assert ( | |
| len(max_dets_per_image) >= 3 | |
| ), "COCOeval requires maxDets (and max_dets_per_image) to have length at least 3" | |
| # In the case that user supplies a custom input for max_dets_per_image, | |
| # apply COCOevalMaxDets to evaluate AP with the custom input. | |
| if max_dets_per_image[2] != 100: | |
| coco_eval = COCOevalMaxDets(coco_gt, coco_dt, iou_type) | |
| if iou_type != "keypoints": | |
| coco_eval.params.maxDets = max_dets_per_image | |
| if img_ids is not None: | |
| coco_eval.params.imgIds = img_ids | |
| if iou_type == "keypoints": | |
| # Use the COCO default keypoint OKS sigmas unless overrides are specified | |
| if kpt_oks_sigmas: | |
| assert hasattr(coco_eval.params, "kpt_oks_sigmas"), "pycocotools is too old!" | |
| coco_eval.params.kpt_oks_sigmas = np.array(kpt_oks_sigmas) | |
| # COCOAPI requires every detection and every gt to have keypoints, so | |
| # we just take the first entry from both | |
| num_keypoints_dt = len(coco_results[0]["keypoints"]) // 3 | |
| num_keypoints_gt = len(next(iter(coco_gt.anns.values()))["keypoints"]) // 3 | |
| num_keypoints_oks = len(coco_eval.params.kpt_oks_sigmas) | |
| assert num_keypoints_oks == num_keypoints_dt == num_keypoints_gt, ( | |
| f"[COCOEvaluator] Prediction contain {num_keypoints_dt} keypoints. " | |
| f"Ground truth contains {num_keypoints_gt} keypoints. " | |
| f"The length of cfg.TEST.KEYPOINT_OKS_SIGMAS is {num_keypoints_oks}. " | |
| "They have to agree with each other. For meaning of OKS, please refer to " | |
| "http://cocodataset.org/#keypoints-eval." | |
| ) | |
| coco_eval.evaluate() | |
| coco_eval.accumulate() | |
| coco_eval.summarize() | |
| return coco_eval | |
| class COCOevalMaxDets(COCOeval): | |
| """ | |
| Modified version of COCOeval for evaluating AP with a custom | |
| maxDets (by default for COCO, maxDets is 100) | |
| """ | |
| def summarize(self): | |
| """ | |
| Compute and display summary metrics for evaluation results given | |
| a custom value for max_dets_per_image | |
| """ | |
| def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): | |
| p = self.params | |
| iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" | |
| titleStr = "Average Precision" if ap == 1 else "Average Recall" | |
| typeStr = "(AP)" if ap == 1 else "(AR)" | |
| iouStr = ( | |
| "{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) | |
| if iouThr is None | |
| else "{:0.2f}".format(iouThr) | |
| ) | |
| aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] | |
| mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] | |
| if ap == 1: | |
| # dimension of precision: [TxRxKxAxM] | |
| s = self.eval["precision"] | |
| # IoU | |
| if iouThr is not None: | |
| t = np.where(iouThr == p.iouThrs)[0] | |
| s = s[t] | |
| s = s[:, :, :, aind, mind] | |
| else: | |
| # dimension of recall: [TxKxAxM] | |
| s = self.eval["recall"] | |
| if iouThr is not None: | |
| t = np.where(iouThr == p.iouThrs)[0] | |
| s = s[t] | |
| s = s[:, :, aind, mind] | |
| if len(s[s > -1]) == 0: | |
| mean_s = -1 | |
| else: | |
| mean_s = np.mean(s[s > -1]) | |
| print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) | |
| return mean_s | |
| def _summarizeDets(): | |
| stats = np.zeros((12,)) | |
| # Evaluate AP using the custom limit on maximum detections per image | |
| stats[0] = _summarize(1, maxDets=self.params.maxDets[2]) | |
| stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) | |
| stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) | |
| stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) | |
| stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) | |
| stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) | |
| stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) | |
| stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) | |
| stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) | |
| stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) | |
| stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) | |
| stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) | |
| return stats | |
| def _summarizeKps(): | |
| stats = np.zeros((10,)) | |
| stats[0] = _summarize(1, maxDets=20) | |
| stats[1] = _summarize(1, maxDets=20, iouThr=0.5) | |
| stats[2] = _summarize(1, maxDets=20, iouThr=0.75) | |
| stats[3] = _summarize(1, maxDets=20, areaRng="medium") | |
| stats[4] = _summarize(1, maxDets=20, areaRng="large") | |
| stats[5] = _summarize(0, maxDets=20) | |
| stats[6] = _summarize(0, maxDets=20, iouThr=0.5) | |
| stats[7] = _summarize(0, maxDets=20, iouThr=0.75) | |
| stats[8] = _summarize(0, maxDets=20, areaRng="medium") | |
| stats[9] = _summarize(0, maxDets=20, areaRng="large") | |
| return stats | |
| if not self.eval: | |
| raise Exception("Please run accumulate() first") | |
| iouType = self.params.iouType | |
| if iouType == "segm" or iouType == "bbox": | |
| summarize = _summarizeDets | |
| elif iouType == "keypoints": | |
| summarize = _summarizeKps | |
| self.stats = summarize() | |
| def __str__(self): | |
| self.summarize() | |