import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer locally model_name = "GoofyLM/gonzalez-v1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # Use float16 for efficiency device_map="auto" # Automatically distribute across available GPUs/devices ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Format messages for the model messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) # Convert messages to model input format chat_template = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize the input inputs = tokenizer(chat_template, return_tensors="pt").to(model.device) # Generate response with streaming input_length = inputs.input_ids.shape[1] generated_tokens = [] # Set up generation parameters gen_kwargs = { "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "do_sample": temperature > 0, "pad_token_id": tokenizer.eos_token_id, } # Stream the generation response = "" for output in model.generate( **inputs, **gen_kwargs, streamer=transformers.TextStreamer(tokenizer, skip_prompt=True), ): # Skip input tokens if len(output) <= input_length: continue # Get new tokens new_tokens = output[input_length:] decoded = tokenizer.decode(new_tokens, skip_special_tokens=True) response = decoded yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a Gonzalez-v1.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], ) if __name__ == "__main__": demo.launch()