Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import tensorflow as tf | |
from tensorflow.keras.models import load_model | |
def load_unet_model(): | |
return load_model('best_unet_model.keras') | |
model = load_unet_model() | |
def preprocess_image(image): | |
image = image.resize((256, 256)) | |
image = np.array(image) / 255.0 | |
image = np.expand_dims(image, axis=0) | |
return image | |
def predict_mask(image): | |
processed_image = preprocess_image(image) | |
predicted_mask = model.predict(processed_image) | |
predicted_mask = (predicted_mask > 0.5).astype(np.uint8) | |
return predicted_mask[0, :, :, 0] | |
st.title('Medical Image Segmentation with U-Net (Mohamed Arbi Nsibi)') | |
st.subheader("Note: The model's segmentation accuracy is not that accurate because of the small training dataset. Larger and more diverse data could improve performance ") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
if st.button('Segment Image'): | |
mask = predict_mask(image) | |
st.image(mask * 255, caption='Segmentation Mask', use_column_width=True) | |
overlay = np.zeros((256, 256, 3), dtype=np.uint8) | |
overlay[:,:,1] = mask * 255 | |
original_resized = np.array(image.resize((256, 256))) | |
overlayed_image = cv2.addWeighted(original_resized, 0.7, overlay, 0.3, 0) | |
st.image(overlayed_image, caption='Segmentation Overlay', use_column_width=True) |