Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
import time
|
5 |
+
import dotenv
|
6 |
+
import streamlit as st
|
7 |
+
from langchain_core.messages import HumanMessage, AIMessage
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
|
10 |
+
|
11 |
+
from langchain_core.prompts import PromptTemplate
|
12 |
+
from langchain.chains import RetrievalQA
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain_community.vectorstores import Pinecone
|
15 |
+
|
16 |
+
|
17 |
+
import pinecone
|
18 |
+
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
|
19 |
+
|
20 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
21 |
+
from langchain_core.prompts import PromptTemplate
|
22 |
+
from langchain_community.llms import CTransformers
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
load_dotenv()
|
27 |
+
st.set_page_config(page_title= "Medical chatbot", page_icon=":bot:")
|
28 |
+
|
29 |
+
if "chat_history" not in st.session_state:
|
30 |
+
st.session_state.chat_history = []
|
31 |
+
|
32 |
+
PINECONE_API_KEY = "1bae0d8e-019e-4e87-8080-ecf523e5f25f"
|
33 |
+
def get_response(user_query):
|
34 |
+
# Initilize the prompt
|
35 |
+
# create prompt template, integrate chatHistory component as well
|
36 |
+
prompt_template = """
|
37 |
+
Use the following pieces of information to answer the user's question.
|
38 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
39 |
+
|
40 |
+
Context: {context}
|
41 |
+
Question: {question}
|
42 |
+
|
43 |
+
Only return the helpful answer below nothing else.
|
44 |
+
Helpful Answer:
|
45 |
+
"""
|
46 |
+
|
47 |
+
PROMPT = PromptTemplate(template = prompt_template, input_variables=["context", "question"])
|
48 |
+
chain_type_kwargs = {"prompt":PROMPT}
|
49 |
+
|
50 |
+
llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML", model_type="llama", config={'max_new_tokens': 1024, 'temperature': 1})
|
51 |
+
|
52 |
+
index_name = "medical-chatbot"
|
53 |
+
index=pinecone.Index(api_key=PINECONE_API_KEY, host="https://medical-chatbot-pv4ded8.svc.aped-4627-b74a.pinecone.io")
|
54 |
+
|
55 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
56 |
+
# Create Pinecone retriever
|
57 |
+
vector_store = Pinecone(index, embeddings, text_key="text")
|
58 |
+
|
59 |
+
|
60 |
+
qa = RetrievalQA.from_chain_type(llm, chain_type="stuff",retriever = vector_store.as_retriever(search_kwargs={"k": 2}), chain_type_kwargs=chain_type_kwargs)
|
61 |
+
answer = qa.invoke({"query":user_query, "context": st.session_state.chat_history})
|
62 |
+
|
63 |
+
return answer
|
64 |
+
# answer = vector_store.similarity_search(user_query, k=3)
|
65 |
+
# return answer.stream().get("answer")
|
66 |
+
|
67 |
+
# Function to simulate typing effect
|
68 |
+
def type_effect(text):
|
69 |
+
for char in text:
|
70 |
+
st.write(char)
|
71 |
+
time.sleep(0.05)
|
72 |
+
st.write("")
|
73 |
+
|
74 |
+
|
75 |
+
st.title("Medical chatbot")
|
76 |
+
|
77 |
+
st.write("Welcome to the medical chatbot. Please enter your symptoms below and I will try to help you.")
|
78 |
+
|
79 |
+
if "chat_history" in st.session_state:
|
80 |
+
for message in st.session_state.chat_history:
|
81 |
+
if "user" in message:
|
82 |
+
with st.chat_message("Human"):
|
83 |
+
st.markdown(message["user"])
|
84 |
+
elif "bot" in message:
|
85 |
+
with st.chat_message("AI"):
|
86 |
+
st.markdown(message["bot"])
|
87 |
+
|
88 |
+
user_query = st.chat_input("Enter your symptoms here")
|
89 |
+
if user_query is not None and user_query != "":
|
90 |
+
|
91 |
+
|
92 |
+
with st.chat_message("Human"):
|
93 |
+
st.markdown(user_query)
|
94 |
+
st.session_state.chat_history.append({"user": user_query})
|
95 |
+
|
96 |
+
with st.chat_message("AI"):
|
97 |
+
# =""
|
98 |
+
# for message in st.session_state.chat_history:
|
99 |
+
# if "user" in message:
|
100 |
+
# += f"User: {message['user']}\n"
|
101 |
+
# elif "bot" in message:
|
102 |
+
# += f"Bot: {message['bot']}\n"
|
103 |
+
|
104 |
+
ai_response = get_response(user_query)
|
105 |
+
# st.write(type(ai_response))
|
106 |
+
result = ai_response["result"]
|
107 |
+
# type_effect(result)
|
108 |
+
st.markdown(result)
|
109 |
+
|
110 |
+
# Get the response from backend and present it here
|
111 |
+
st.session_state.chat_history.append({"bot": result})
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
# import os
|
116 |
+
# import time
|
117 |
+
# import dotenv
|
118 |
+
# import streamlit as st
|
119 |
+
# from dotenv import load_dotenv
|
120 |
+
|
121 |
+
# from langchain import PromptTemplate
|
122 |
+
# from langchain.chains import RetrievalQA
|
123 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
124 |
+
# from langchain.vectorstores import Pinecone
|
125 |
+
|
126 |
+
# import pinecone
|
127 |
+
# from langchain.llms import CTransformers
|
128 |
+
|
129 |
+
# # Load environment variables
|
130 |
+
# load_dotenv()
|
131 |
+
|
132 |
+
# # Initialize Streamlit page config
|
133 |
+
# st.set_page_config(page_title="Medical Chatbot", page_icon=":bot:")
|
134 |
+
|
135 |
+
# # Initialize chat history in session state
|
136 |
+
# if "chat_history" not in st.session_state:
|
137 |
+
# st.session_state.chat_history = []
|
138 |
+
|
139 |
+
# PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
|
140 |
+
# HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
|
141 |
+
|
142 |
+
# # Cache models and vector store initialization
|
143 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
144 |
+
# @st.cache_resource
|
145 |
+
# def initialize_models():
|
146 |
+
# # Load language model
|
147 |
+
|
148 |
+
# llm = CTransformers(model="model/llama-2-7b-chat.ggmlv3.q4_0.bin", model_type="llama", config={'max_new_tokens': 1024, 'temperature': 1})
|
149 |
+
|
150 |
+
|
151 |
+
# # Initialize Pinecone index
|
152 |
+
# index = pinecone.Index(api_key=PINECONE_API_KEY, host="https://medical-chatbot-pv4ded8.svc.aped-4627-b74a.pinecone.io")
|
153 |
+
|
154 |
+
# # Initialize embeddings
|
155 |
+
|
156 |
+
# # Create Pinecone retriever
|
157 |
+
# vector_store = Pinecone(index, embeddings, text_key="text")
|
158 |
+
|
159 |
+
# return llm, vector_store
|
160 |
+
|
161 |
+
# llm, vector_store = initialize_models()
|
162 |
+
|
163 |
+
# # Define prompt template
|
164 |
+
# prompt_template = """
|
165 |
+
# Use the following pieces of information to answer the user's question.
|
166 |
+
# If you don't know the answer, just say that I don't know, don't try to make up an answer.
|
167 |
+
|
168 |
+
# Context: {context}
|
169 |
+
# Question: {question}
|
170 |
+
|
171 |
+
# Only return the helpful answer below nothing else.
|
172 |
+
# Helpful Answer:
|
173 |
+
# """
|
174 |
+
# PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
175 |
+
|
176 |
+
# # Cache QA chain initialization
|
177 |
+
# @st.cache_resource
|
178 |
+
# def _initialize_qa(_llm, _vector_store):
|
179 |
+
# return RetrievalQA.from_chain_type(
|
180 |
+
# _llm,
|
181 |
+
# chain_type="stuff",
|
182 |
+
# retriever=_vector_store.as_retriever(search_kwargs={"k": 2}),
|
183 |
+
# chain_type_kwargs={"prompt": PROMPT}
|
184 |
+
# )
|
185 |
+
|
186 |
+
# qa = _initialize_qa(llm, vector_store)
|
187 |
+
|
188 |
+
# def get_response(user_query):
|
189 |
+
# # chat_context = "\n".join([f"User: {msg['user']}" if 'user' in msg else f"Bot: {msg['bot']}" for msg in st.session_state.chat_history])
|
190 |
+
# answer = qa.invoke({"query": user_query, "context": st.session_state.chat_history})
|
191 |
+
# return answer
|
192 |
+
|
193 |
+
# # Function to simulate typing effect
|
194 |
+
# # def type_effect(text):
|
195 |
+
# # for char in text:
|
196 |
+
# # st.write(char, end="")
|
197 |
+
# # time.sleep(0.05)
|
198 |
+
# # st.write("")
|
199 |
+
|
200 |
+
# # Streamlit UI
|
201 |
+
# st.title("Medical Chatbot")
|
202 |
+
# st.write("Welcome to the medical chatbot. Please enter your symptoms below and I will try to help you.")
|
203 |
+
|
204 |
+
# # Display chat history
|
205 |
+
# for message in st.session_state.chat_history:
|
206 |
+
# if "user" in message:
|
207 |
+
# with st.chat_message("Human"):
|
208 |
+
# st.markdown(message["user"])
|
209 |
+
# elif "bot" in message:
|
210 |
+
# with st.chat_message("AI"):
|
211 |
+
# st.markdown(message["bot"])
|
212 |
+
|
213 |
+
# # Chat input and response handling
|
214 |
+
# user_query = st.chat_input("Enter your symptoms here")
|
215 |
+
# if user_query:
|
216 |
+
# with st.chat_message("Human"):
|
217 |
+
# st.markdown(user_query)
|
218 |
+
# st.session_state.chat_history.append({"user": user_query})
|
219 |
+
|
220 |
+
# with st.chat_message("AI"):
|
221 |
+
# ai_response = get_response(user_query)
|
222 |
+
# result = ai_response["result"]
|
223 |
+
# st.markdown(result)
|
224 |
+
# st.session_state.chat_history.append({"bot": result})
|