Spaces:
Sleeping
Sleeping
| from langchain.tools import tool | |
| #mathematical operations | |
| import cmath | |
| def multiply(a: float, b: float) -> float: | |
| return a * b | |
| def add(a: float, b: float) -> float: | |
| return a + b | |
| def subtract(a: float, b: float) -> int: | |
| return a - b | |
| def divide(a: float, b: float) -> float: | |
| if b == 0: | |
| raise ValueError("Cannot divided by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| return a % b | |
| def power(a: float, b: float) -> float: | |
| return a**b | |
| def square_root(a: float) -> float | complex: | |
| if a >= 0: | |
| return a**0.5 | |
| return cmath.sqrt(a) | |
| from langchain_community.document_loaders import WikipediaLoader | |
| def wiki_search(query: str) -> dict: | |
| print(f"Searching Wikipedia for: {query}") | |
| try: | |
| # Load up to 2 documents from Wikipedia | |
| search_docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
| # Format the output for each document | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata.get("source", "")}" page="{doc.metadata.get("page", "")}">\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ] | |
| ) | |
| print(f"Here are the outputs:\n{formatted_search_docs}") | |
| return {"wiki_results": formatted_search_docs} | |
| except Exception as e: | |
| print(f"Error occurred: {e}") | |
| return {"wiki_results": f"None found for {query}, use the results from the other tools or similar questions obtained earlier."} | |
| from langchain_community.document_loaders import ArxivLoader | |
| def arvix_search(query: str) -> str: | |
| search_docs = ArxivLoader(query=query, load_max_docs=3).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>{doc.page_content[:1000]}</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"arvix_results": formatted_search_docs} | |
| from langchain_community.tools.tavily_search import TavilySearchResults | |
| def web_search(query: str) -> str: | |
| search_docs = TavilySearchResults(max_results=3).invoke(query=query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>{doc.page_content}</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"web_results": formatted_search_docs} | |
| from upload_metadata_n_setup_retrivers import retriever | |
| def vector_search(query:str) -> str: | |
| search_docs = retriever.invoke(input=query) | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>{doc.page_content}</Document>' | |
| for doc in search_docs | |
| ]) | |
| return formatted_search_docs |