Create model.py
Browse files
model.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# model.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import timm
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
# Character-to-Index Mapping (should be the same as used during training)
|
8 |
+
amharic_chars = list(' ሀሁሂሃሄህሆለሉሊላሌልሎሐሑሒሓሔሕሖመሙሚማሜምሞሰሱሲሳስሶረሩሪራሬርሮሠሡሢሣሤሥሦሸሹሺሻሼሽሾቀቁቂቃቄቅቆበቡቢባቤብቦተቱቲታቴትቶቸቹቺቻቼችቾኀኃነኑኒናኔንኖኘኙኚኛኜኝኞአኡኢኣኤእኦከኩኪካኬክኮኸኹኺኻኼኽኾወዉዊዋዌውዎዐዑዒዓዔዕዖዘዙዚዛዜዝዞዠዡዢዣዤዥዦየዩዪያዬይዮደዱዲዳዴድዶጀጁጂጃጄጅጆገጉጊጋጌግጎጠጡጢጣጤጥጦጨጩጪጫጬጭጮጰጱጲጳጴጵጶጸጹጺጻጼጽጾፀፁፂፃፄፅፆፈፉፊፋፌፍፎፐፑፒፓፔፕፖቨቩቪቫቬቭቮ0123456789፥፣()-ሏሟሷሯሿቧቆቈቋቷቿኗኟዟዧዷጇጧጯጿፏኳኋኧቯጐጕጓ።')
|
9 |
+
|
10 |
+
char_to_idx = {char: idx + 1 for idx, char in enumerate(amharic_chars)} # Start indexing from 1
|
11 |
+
char_to_idx['<UNK>'] = len(amharic_chars) + 1 # Unknown characters
|
12 |
+
idx_to_char = {idx: char for char, idx in char_to_idx.items()}
|
13 |
+
idx_to_char[0] = '<blank>' # CTC blank token
|
14 |
+
|
15 |
+
vocab_size = len(char_to_idx) + 1 # +1 for the blank token at index 0
|
16 |
+
|
17 |
+
class ViTRecognitionModel(nn.Module):
|
18 |
+
def __init__(self, vocab_size, hidden_dim=768, max_length=20):
|
19 |
+
super(ViTRecognitionModel, self).__init__()
|
20 |
+
self.vit = timm.create_model(
|
21 |
+
'vit_base_patch16_224',
|
22 |
+
pretrained=True,
|
23 |
+
num_classes=0, # Disable classification head
|
24 |
+
features_only=True, # Return feature maps
|
25 |
+
out_indices=(11,) # Get the last feature map
|
26 |
+
)
|
27 |
+
self.hidden_dim = hidden_dim
|
28 |
+
self.fc = nn.Linear(hidden_dim, vocab_size) # Map hidden_dim to vocab_size
|
29 |
+
self.log_softmax = nn.LogSoftmax(dim=2)
|
30 |
+
self.max_length = max_length
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
features = self.vit(x)[0] # [batch, hidden_dim, H*W]
|
34 |
+
|
35 |
+
if features.dim() == 3:
|
36 |
+
batch_size, hidden_dim, num_patches = features.shape
|
37 |
+
grid_size = int(num_patches ** 0.5)
|
38 |
+
if grid_size * grid_size != num_patches:
|
39 |
+
raise ValueError(f"Number of patches {num_patches} is not a perfect square.")
|
40 |
+
H, W = grid_size, grid_size
|
41 |
+
features = features.view(batch_size, hidden_dim, H, W)
|
42 |
+
elif features.dim() == 4:
|
43 |
+
batch_size, hidden_dim, H, W = features.shape
|
44 |
+
else:
|
45 |
+
raise ValueError(f"Unexpected feature dimensions: {features.dim()}, expected 3 or 4.")
|
46 |
+
|
47 |
+
features = features.flatten(2).transpose(1, 2) # [batch, H*W, hidden_dim]
|
48 |
+
logits = self.fc(features) # [batch, H*W, vocab_size]
|
49 |
+
log_probs = self.log_softmax(logits) # [batch, H*W, vocab_size]
|
50 |
+
log_probs = log_probs.transpose(0, 1) # [H*W, batch, vocab_size]
|
51 |
+
return log_probs
|
52 |
+
|
53 |
+
def load_model(model_path, device='cpu'):
|
54 |
+
model = ViTRecognitionModel(vocab_size=vocab_size, hidden_dim=768, max_length=20)
|
55 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
56 |
+
model.to(device)
|
57 |
+
model.eval()
|
58 |
+
return model
|