Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,70 @@
|
|
1 |
# app.py
|
2 |
|
3 |
-
import
|
4 |
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
from torchvision import transforms
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import matplotlib.pyplot as plt
|
12 |
-
import matplotlib.patches as patches
|
13 |
-
|
14 |
-
# Optional: If integrating OCR
|
15 |
-
# import pytesseract
|
16 |
-
|
17 |
-
# Define the Detection Model Architecture
|
18 |
-
class ViTDetectionModel(nn.Module):
|
19 |
-
def __init__(self, num_queries=100, hidden_dim=768):
|
20 |
-
"""
|
21 |
-
Initializes the ViTDetectionModel.
|
22 |
-
|
23 |
-
Args:
|
24 |
-
num_queries (int, optional): Number of detection queries. Defaults to 100.
|
25 |
-
hidden_dim (int, optional): Hidden dimension size. Defaults to 768.
|
26 |
-
"""
|
27 |
-
super(ViTDetectionModel, self).__init__()
|
28 |
-
# Configure the ViT model to output features only
|
29 |
-
self.vit = timm.create_model(
|
30 |
-
'vit_base_patch16_224',
|
31 |
-
pretrained=False, # Set to False since we are loading a trained model
|
32 |
-
num_classes=0, # Disable classification head
|
33 |
-
features_only=True, # Return feature maps
|
34 |
-
out_indices=(11,) # Get the last feature map
|
35 |
-
)
|
36 |
-
self.query_embed = nn.Embedding(num_queries, hidden_dim)
|
37 |
-
self.fc_bbox = nn.Linear(hidden_dim, 8) # 4 points (x, y) for quadrilateral
|
38 |
-
self.fc_class = nn.Linear(hidden_dim, 1) # Binary classification
|
39 |
-
|
40 |
-
def forward(self, x):
|
41 |
-
"""
|
42 |
-
Forward pass of the detection model.
|
43 |
-
|
44 |
-
Args:
|
45 |
-
x (Tensor): Input images [batch, 3, H, W].
|
46 |
-
|
47 |
-
Returns:
|
48 |
-
Tuple[Tensor, Tensor]: Predicted bounding boxes and class scores.
|
49 |
-
"""
|
50 |
-
# Retrieve the feature map
|
51 |
-
features = self.vit(x)[0] # [batch, hidden_dim, H*W]
|
52 |
-
|
53 |
-
if features.dim() == 3:
|
54 |
-
batch_size, hidden_dim, num_patches = features.shape
|
55 |
-
grid_size = int(np.sqrt(num_patches))
|
56 |
-
if grid_size * grid_size != num_patches:
|
57 |
-
raise ValueError(f"Number of patches {num_patches} is not a perfect square.")
|
58 |
-
H, W = grid_size, grid_size
|
59 |
-
features = features.view(batch_size, hidden_dim, H, W)
|
60 |
-
elif features.dim() == 4:
|
61 |
-
batch_size, hidden_dim, H, W = features.shape
|
62 |
-
else:
|
63 |
-
raise ValueError(f"Unexpected feature dimensions: {features.dim()}, expected 3 or 4.")
|
64 |
-
|
65 |
-
# Flatten the spatial dimensions
|
66 |
-
features = features.flatten(2).transpose(1, 2) # [batch, H*W, hidden_dim]
|
67 |
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
|
75 |
-
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
-
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
def load_model(model_path, device):
|
86 |
-
"""
|
87 |
-
Loads the trained detection model.
|
88 |
-
|
89 |
-
Args:
|
90 |
-
model_path (str): Path to the saved model state dictionary.
|
91 |
-
device (torch.device): Device to load the model on.
|
92 |
-
|
93 |
-
Returns:
|
94 |
-
nn.Module: Loaded detection model.
|
95 |
-
"""
|
96 |
-
model = ViTDetectionModel(num_queries=100, hidden_dim=768).to(device)
|
97 |
-
model.load_state_dict(torch.load(model_path, map_location=device))
|
98 |
-
model.eval()
|
99 |
-
return model
|
100 |
|
101 |
-
|
102 |
-
def detect_text(image, model, device, max_boxes=100, confidence_threshold=0.5):
|
103 |
"""
|
104 |
-
|
105 |
-
|
106 |
-
Args:
|
107 |
-
image (PIL Image): Input image.
|
108 |
-
model (nn.Module): Trained detection model.
|
109 |
-
device (torch.device): Device to run the model on.
|
110 |
-
max_boxes (int, optional): Maximum number of bounding boxes to return. Defaults to 100.
|
111 |
-
confidence_threshold (float, optional): Threshold to filter detections. Defaults to 0.5.
|
112 |
-
|
113 |
-
Returns:
|
114 |
-
PIL Image: Image with detected bounding boxes drawn.
|
115 |
"""
|
116 |
-
# Define transformation
|
117 |
-
transform = transforms.Compose([
|
118 |
-
transforms.Resize((224, 224)),
|
119 |
-
transforms.ToTensor(),
|
120 |
-
])
|
121 |
-
|
122 |
# Preprocess the image
|
123 |
-
input_tensor =
|
124 |
|
125 |
-
# Perform
|
126 |
with torch.no_grad():
|
127 |
-
|
128 |
-
|
129 |
-
# Process predictions
|
130 |
-
pred_bboxes = pred_bboxes.squeeze(0) # [num_queries, 8]
|
131 |
-
pred_classes = pred_classes.squeeze(0) # [num_queries, 1]
|
132 |
-
pred_classes_sigmoid = torch.sigmoid(pred_classes)
|
133 |
-
high_conf_indices = (pred_classes_sigmoid > confidence_threshold).squeeze(1).nonzero(as_tuple=False).squeeze(1)
|
134 |
-
selected_indices = high_conf_indices[:max_boxes]
|
135 |
-
selected_bboxes = pred_bboxes[selected_indices] # [selected, 8]
|
136 |
-
|
137 |
-
# Denormalize bounding boxes to original image size
|
138 |
-
width, height = image.size
|
139 |
-
scale_x = width / 224
|
140 |
-
scale_y = height / 224
|
141 |
-
boxes = selected_bboxes.cpu().numpy() * np.array([scale_x, scale_y] * 4) # [selected, 8]
|
142 |
-
|
143 |
-
# Draw bounding boxes on the image
|
144 |
-
fig, ax = plt.subplots(1, figsize=(12, 12))
|
145 |
-
ax.imshow(image)
|
146 |
-
|
147 |
-
for box in boxes:
|
148 |
-
polygon = patches.Polygon(box.reshape(-1, 2), linewidth=2, edgecolor='r', facecolor='none')
|
149 |
-
ax.add_patch(polygon)
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
fig.canvas.draw()
|
154 |
-
img_with_boxes = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
|
155 |
-
plt.close(fig)
|
156 |
|
157 |
-
return
|
158 |
-
|
159 |
-
# Optional: If integrating OCR with pytesseract
|
160 |
-
# def detect_and_recognize_text(image, model, device, max_boxes=100, confidence_threshold=0.5):
|
161 |
-
# # Similar to detect_text but includes OCR steps
|
162 |
-
# pass
|
163 |
-
|
164 |
-
# Initialize the model
|
165 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
166 |
-
model_path = "finetuned_recog_model.pth" # Ensure this path matches where the model is stored
|
167 |
-
model = load_model(model_path, device)
|
168 |
-
print("Model loaded successfully.")
|
169 |
|
170 |
-
|
171 |
-
def gradio_detect(image):
|
172 |
"""
|
173 |
-
|
174 |
-
|
175 |
-
Args:
|
176 |
-
image (PIL Image): Uploaded image.
|
177 |
-
|
178 |
-
Returns:
|
179 |
-
PIL Image: Image with detected bounding boxes.
|
180 |
"""
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
#
|
185 |
iface = gr.Interface(
|
186 |
-
fn=
|
187 |
-
inputs=gr.Image(type="pil"),
|
188 |
-
outputs=gr.
|
189 |
-
title="Text
|
190 |
-
description="Upload an image, and the model will
|
191 |
-
examples=[
|
192 |
-
# You can add URLs or paths to example images here
|
193 |
-
# "https://example.com/image1.jpg",
|
194 |
-
# "https://example.com/image2.jpg",
|
195 |
-
],
|
196 |
-
allow_flagging="never"
|
197 |
)
|
198 |
|
199 |
-
# Launch the Gradio
|
200 |
-
|
201 |
-
|
|
|
1 |
# app.py
|
2 |
|
3 |
+
import gradio as gr
|
4 |
import torch
|
|
|
|
|
5 |
from PIL import Image
|
6 |
+
from model import load_model
|
7 |
+
from utils import preprocess_image, decode_predictions
|
8 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
# Load the model (ensure the path is correct)
|
11 |
+
MODEL_PATH = "saved_models/finetuned/finetuned_recog_model.pth"
|
12 |
+
FONT_PATH = "fonts/NotoSansEthiopic-Regular.ttf" # Update the path to your font
|
13 |
|
14 |
+
# Check if model file exists
|
15 |
+
if not os.path.exists(MODEL_PATH):
|
16 |
+
raise FileNotFoundError(f"Model file not found at {MODEL_PATH}. Please provide the correct path.")
|
17 |
|
18 |
+
# Check if font file exists
|
19 |
+
if not os.path.exists(FONT_PATH):
|
20 |
+
raise FileNotFoundError(f"Font file not found at {FONT_PATH}. Please provide the correct path.")
|
21 |
|
22 |
+
# Load the model
|
23 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
+
model = load_model(MODEL_PATH, device=device)
|
25 |
|
26 |
+
# Load the font for rendering Amharic text
|
27 |
+
from matplotlib import font_manager as fm
|
28 |
+
import matplotlib.pyplot as plt
|
29 |
|
30 |
+
ethiopic_font = fm.FontProperties(fname=FONT_PATH, size=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
def recognize_text(image: Image.Image):
|
|
|
33 |
"""
|
34 |
+
Function to recognize text from an image.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Preprocess the image
|
37 |
+
input_tensor = preprocess_image(image).unsqueeze(0).to(device) # [1, 3, 224, 224]
|
38 |
|
39 |
+
# Perform inference
|
40 |
with torch.no_grad():
|
41 |
+
log_probs = model(input_tensor) # [H*W, 1, vocab_size]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Decode predictions
|
44 |
+
recognized_texts = decode_predictions(log_probs)
|
|
|
|
|
|
|
45 |
|
46 |
+
return recognized_texts[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
def display_image_with_text(image: Image.Image, recognized_text: str):
|
|
|
49 |
"""
|
50 |
+
Function to display the image with recognized text.
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
"""
|
52 |
+
plt.figure(figsize=(6,6))
|
53 |
+
plt.imshow(image)
|
54 |
+
plt.axis('off')
|
55 |
+
plt.title(f"Recognized Text: {recognized_text}", fontproperties=ethiopic_font)
|
56 |
+
plt.show()
|
57 |
+
return plt
|
58 |
|
59 |
+
# Define Gradio Interface
|
60 |
iface = gr.Interface(
|
61 |
+
fn=recognize_text,
|
62 |
+
inputs=gr.inputs.Image(type="pil"),
|
63 |
+
outputs=gr.outputs.Textbox(),
|
64 |
+
title="Amharic Text Recognition",
|
65 |
+
description="Upload an image containing Amharic text, and the model will recognize and display the text."
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
)
|
67 |
|
68 |
+
# Launch the Gradio app
|
69 |
+
if __name__ == "__main__":
|
70 |
+
iface.launch()
|