File size: 11,382 Bytes
85700de
503b578
83d2d2e
 
 
 
 
baa0bb5
18685be
 
 
 
 
85700de
 
 
02197bf
baa0bb5
1b751e2
baa0bb5
1b751e2
 
85700de
baa0bb5
18685be
17a1603
 
 
 
1b751e2
17a1603
18685be
 
17a1603
 
 
 
85700de
baa0bb5
 
85700de
 
 
 
 
 
 
 
18685be
85700de
 
18685be
85700de
 
baa0bb5
85700de
83d2d2e
 
 
baa0bb5
 
 
85700de
baa0bb5
85700de
 
 
 
 
 
18685be
85700de
 
 
18685be
85700de
 
 
 
 
 
 
baa0bb5
83d2d2e
baa0bb5
 
 
85700de
503b578
85700de
18685be
85700de
83d2d2e
 
 
 
18685be
83d2d2e
baa0bb5
83d2d2e
 
85700de
baa0bb5
83d2d2e
 
 
 
 
17a1603
1b751e2
17a1603
1b751e2
 
17a1603
1b751e2
 
 
 
18685be
 
1b751e2
 
18685be
1b751e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a1603
85700de
18685be
85700de
 
 
 
 
 
 
 
 
18685be
85700de
17a1603
 
1b751e2
18685be
1b751e2
17a1603
18685be
 
 
 
 
17a1603
83d2d2e
17a1603
 
 
 
 
 
 
 
 
 
 
18685be
17a1603
1b751e2
 
 
 
 
 
18685be
 
1b751e2
 
17a1603
 
baa0bb5
 
1b751e2
 
83d2d2e
85700de
18685be
85700de
 
baa0bb5
 
1b751e2
baa0bb5
83d2d2e
baa0bb5
 
503b578
 
85700de
18685be
85700de
17a1603
85700de
 
 
 
 
 
17a1603
 
d0e2818
83d2d2e
baa0bb5
17a1603
85700de
 
 
 
 
 
 
 
1b751e2
85700de
 
 
 
1b751e2
18685be
1b751e2
85700de
1b751e2
18685be
17a1603
1b751e2
 
 
 
 
17a1603
85700de
17a1603
 
85700de
 
17a1603
85700de
17a1603
 
85700de
1b751e2
 
 
 
 
 
 
 
 
85700de
 
 
 
d0e2818
17a1603
 
d0e2818
83d2d2e
85700de
18685be
85700de
83d2d2e
 
 
 
 
17a1603
 
 
83d2d2e
18685be
17a1603
 
 
 
 
 
 
 
 
18685be
17a1603
 
 
 
 
d0e2818
83d2d2e
85700de
83d2d2e
 
 
baa0bb5
17a1603
 
503b578
85700de
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os, re, torch, traceback
import gradio as gr
from threading import Thread
from transformers import (
    AutoTokenizer, AutoModelForCausalLM,
    TextIteratorStreamer, BitsAndBytesConfig
)

# ======================
# 环境变量修正(防止 libgomp 报错)
# ======================
os.environ["OMP_NUM_THREADS"] = "1"

# ======================
# 可调参数(也可用 Space 的 Variables 覆盖)
# ======================
MODEL_ID = os.getenv("MODEL_ID", "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v3").strip()
MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", "256"))
TEMPERATURE = float(os.getenv("TEMPERATURE", "0.85"))   # 略升,减复读
TOP_P = float(os.getenv("TOP_P", "0.9"))
TOP_K = int(os.getenv("TOP_K", "50"))
REPETITION_PENALTY = float(os.getenv("REPETITION_PENALTY", "1.12"))
SAFE_MODE = os.getenv("SAFE_MODE", "1") != "0"  # 1=开启基础过滤;想关就设为 0

# ——系统基础提示 + 人设默认——
BASE_SYSTEM_PROMPT = os.getenv(
    "SYSTEM_PROMPT",
    """
You are a helpful, concise chat assistant.
Do NOT reveal chain-of-thought, analysis, inner reasoning, <Thought>, <analysis>, <think>, or similar sections.
If asked to explain reasoning, provide a brief, high-level summary of steps only.
The final user-visible answer SHOULD be enclosed in <final> ... </final>. 
If you don't use <final>, output plain text.
    """
).strip()
DEFAULT_PERSONA = os.getenv("PERSONA", "").strip()

print(f"[boot] MODEL_ID={MODEL_ID}")
print(f"[boot] torch.cuda.is_available={torch.cuda.is_available()}")

# ======================
# 4bit 量化(T4 用 FP16 计算精度)
# ======================
if torch.cuda.is_available():
    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=True,
        bnb_4bit_compute_dtype=torch.float16,
    )
else:
    bnb_config = None

# ======================
# 加载 tokenizer
# ======================
tokenizer = AutoTokenizer.from_pretrained(
    MODEL_ID, use_fast=True, trust_remote_code=True
)
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token

# ======================
# 加载 model
# ======================
if torch.cuda.is_available():
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="auto",
        quantization_config=bnb_config,
        torch_dtype=torch.float16,
        trust_remote_code=True,
    )
else:
    print("[boot] No GPU detected. Running on CPU is very slow for 7B.")
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_ID,
        device_map="cpu",
        torch_dtype=torch.float32,
        trust_remote_code=True,
        low_cpu_mem_usage=True,
    )

model.eval()
model.generation_config.eos_token_id = tokenizer.eos_token_id
model.generation_config.pad_token_id = tokenizer.eos_token_id

print(f"[boot] model device: {next(model.parameters()).device}")

# ======================
# 安全过滤
# ======================
BANNED_PATTERNS = [
    r"(?i)未成年|未成年的|中学生|小学生",
    r"(?i)强迫|胁迫|迷奸|药物控制",
    r"(?i)换联系方式|加微信|加QQ|加.*联系方式",
    r"(?i)线下见面|线下约|酒店",
]
SAFE_REPLACEMENT = "( ̄^ ̄)ゞ 哼哼~"

def violates(text: str) -> bool:
    if not SAFE_MODE or not text:
        return False
    for p in BANNED_PATTERNS:
        if re.search(p, text):
            return True
    return False

# ======================
# FinalFilter:优先只保留 <final>;没有 <final> 时回退显示全文
# ======================
FINAL_OPEN_PAT = re.compile(r"(?is)<\s*final\s*>")
FINAL_CLOSE_PAT = re.compile(r"(?is)</\s*final\s*>")

class FinalFilter:
    def __init__(self):
        self.in_final = False
        self.seen_final = False
        self.visible = ""
        self.buffer = ""

    def push(self, chunk: str):
        self.buffer += chunk
        i = 0
        while i < len(chunk):
            if not self.in_final:
                m = FINAL_OPEN_PAT.search(chunk, i)
                if not m:
                    break
                i = m.end()
                self.in_final = True
                self.seen_final = True
            else:
                m = FINAL_CLOSE_PAT.search(chunk, i)
                if not m:
                    self.visible += chunk[i:]
                    i = len(chunk)
                else:
                    self.visible += chunk[i:m.start()]
                    i = m.end()
                    self.in_final = False

    def get_visible(self) -> str:
        text = (self.visible if self.seen_final and self.visible.strip() else self.buffer)
        return text.strip()

# ======================
# 动态长度
# ======================
def choose_max_new_tokens(user_text: str) -> int:
    n = len(user_text or "")
    if n <= 15:   return min(160, MAX_NEW_TOKENS)
    if n <= 50:   return min(256, MAX_NEW_TOKENS)
    if n <= 120:  return min(320, MAX_NEW_TOKENS + 64)
    return min(384, MAX_NEW_TOKENS + 128)

# ======================
# Persona 模板
# ======================
PERSONA_TEMPLATES = {
    "默认(Default)": "",
    "性感火辣 Flirty & Spicy": (
    "风格:挑逗、暧昧、直接、无评判,语言热辣大胆,带点坏坏的撩人气息。\n"
    "行为:多用双关语、调侃与骚话;主动带动暧昧氛围,让对话充满张力;适度使用火焰🔥、唇👄、爱心❤️等表情符号。\n"
    ),
    "温柔体贴 Sweet & Caring": "风格:温柔、共情、耐心,语气轻柔,简洁而温暖。",
    "傲娇 Tsundere": "风格:表面嘴硬、内心关心;语气俏皮、略微傲娇但不贬低用户。",
    "风趣段子手 Witty Jokester": "风格:机智幽默、梗多但不低俗;注重包袱节奏。",
    "严谨导师 Analytical Coach": "风格:结构化、可操作;分点给出步骤与注意事项。",
    "冷淡毒舌 Deadpan Sarcasm": "风格:冷面、克制、轻微反讽;不粗鲁不辱骂。",
}

def compose_system_prompt(base_prompt: str, persona_text: str) -> str:
    persona_text = (persona_text or "").strip()
    if not persona_text:
        return base_prompt
    return (
        f"{base_prompt}\n\n"
        f"# Persona\n{persona_text}\n\n"
        f"- Stay in persona unless the user explicitly asks to change.\n"
    )

# ======================
# 构建 Prompt
# ======================
def apply_chat_template_with_fallback(messages):
    try:
        return tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    except Exception:
        parts = []
        for m in messages:
            parts.append(f"<|{m['role']}|>\n{m['content']}\n</s>")
        parts.append("<|assistant|>\n")
        return "".join(parts)

def build_prompt(history_msgs, user_msg: str, persona_text: str) -> str:
    system_prompt = compose_system_prompt(BASE_SYSTEM_PROMPT, persona_text)
    tail = [m for m in history_msgs if m.get("role") in ("user", "assistant")]
    tail = tail[-8:] if len(tail) > 8 else tail
    messages = [{"role": "system", "content": system_prompt}] + tail + [{"role": "user", "content": user_msg}]
    return apply_chat_template_with_fallback(messages)

# ======================
# 推理参数
# ======================
BASE_GEN_KW = dict(
    temperature=TEMPERATURE,
    top_p=TOP_P,
    top_k=TOP_K,
    repetition_penalty=REPETITION_PENALTY,
    do_sample=True,
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.eos_token_id,
)

# ======================
# 流式输出
# ======================
def stream_chat(history_msgs, user_msg, persona_text):
    try:
        if not user_msg or not user_msg.strip():
            yield history_msgs; return

        if violates(user_msg):
            yield history_msgs + [
                {"role": "user", "content": user_msg},
                {"role": "assistant", "content": SAFE_REPLACEMENT},
            ]
            return

        prompt = build_prompt(history_msgs, user_msg, persona_text)
        inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
        streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

        gen_kwargs = dict(
            **inputs, streamer=streamer,
            max_new_tokens=choose_max_new_tokens(user_msg),
            **BASE_GEN_KW
        )

        print("[gen] start")
        th = Thread(target=model.generate, kwargs=gen_kwargs, daemon=True)
        th.start()

        ff = FinalFilter()
        last_len = 0

        for chunk in streamer:
            ff.push(chunk)
            visible = ff.get_visible()

            new_text = visible[last_len:]
            if not new_text:
                continue
            last_len = len(visible)

            if violates(visible):
                yield history_msgs + [
                    {"role": "user", "content": user_msg},
                    {"role": "assistant", "content": SAFE_REPLACEMENT},
                ]
                return

            yield history_msgs + [
                {"role": "user", "content": user_msg},
                {"role": "assistant", "content": visible},
            ]

        print("[gen] done, shown_len:", last_len)

        if last_len == 0:
            hint = "(未产生可见输出,建议重试或更换提示词)"
            yield history_msgs + [
                {"role": "user", "content": user_msg},
                {"role": "assistant", "content": hint},
            ]

    except Exception as e:
        traceback.print_exc()
        err = f"【运行异常】{type(e).__name__}: {e}"
        yield history_msgs + [
            {"role": "user", "content": user_msg},
            {"role": "assistant", "content": err},
        ]

# ======================
# Gradio UI
# ======================
CSS = """
.gradio-container{ max-width:640px; margin:auto; }
footer{ display:none !important; }
"""

def pick_persona(name: str) -> str:
    return PERSONA_TEMPLATES.get(name or "默认(Default)", "")

with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
    gr.Markdown("### 懂你寂寞 · Mobile Web Chat\n")

    with gr.Accordion("🎭 Persona(人设)", open=False):
        persona_sel = gr.Dropdown(
            choices=list(PERSONA_TEMPLATES.keys()),
            value="默认(Default)" if not DEFAULT_PERSONA else None,
            label="选择预设人设"
        )
        persona_box = gr.Textbox(
            value=DEFAULT_PERSONA if DEFAULT_PERSONA else pick_persona("默认(Default)"),
            placeholder="在这里粘贴 / 编辑你的 Persona 文本。",
            lines=8,
            label="Persona 描述(可编辑,发送时以此为准)"
        )
        persona_sel.change(fn=pick_persona, inputs=persona_sel, outputs=persona_box)

    chat = gr.Chatbot(type="messages", height=520, show_copy_button=True)
    with gr.Row():
        msg = gr.Textbox(placeholder="说点什么…(回车发送)", autofocus=True)
        send = gr.Button("发送", variant="primary")
    clear = gr.Button("清空对话")

    clear.click(lambda: [], outputs=[chat])
    msg.submit(stream_chat, [chat, msg, persona_box], [chat], concurrency_limit=4); msg.submit(lambda:"", None, msg)
    send.click(stream_chat, [chat, msg, persona_box], [chat], concurrency_limit=4); send.click(lambda:"", None, msg)

demo.queue().launch(ssr_mode=False, show_api=False)