File size: 5,084 Bytes
b797e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, auc

st.title("๐Ÿฉบ Diabetes Prediction App")

# Load dataset
@st.cache_data
def load_data():
    file_path = "diabetes_prediction_dataset.csv"
    df = pd.read_csv(file_path)
    return df

df = load_data()

# Encode categorical features
label_encoders = {}
for col in ["gender", "smoking_history"]:
    le = LabelEncoder()
    df[col] = le.fit_transform(df[col])
    label_encoders[col] = le

# Convert binary features (0,1) to "Yes" and "No" for display
binary_columns = ["hypertension", "heart_disease", "diabetes"]
df_display = df.copy()  # Keep a copy for display
for col in binary_columns:
    df_display[col] = df_display[col].map({0: "No", 1: "Yes"})

# Splitting dataset
X = df.drop(columns=["diabetes"])
y = df["diabetes"]  # Keep original 0/1 format

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Standardizing data
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

# Train Random Forest model
rf = RandomForestClassifier(n_estimators=100, random_state=42)
rf.fit(X_train_scaled, y_train)

# Tabs
tab1, tab2, tab3 = st.tabs(["๐Ÿ“„ Dataset Preview", "๐Ÿ“ˆ Model Performance", "๐Ÿฉบ Prediction"])

# 1๏ธโƒฃ **Tab 1: Dataset Preview**
with tab1:
    st.subheader("๐Ÿ“„ Complete Dataset Preview")
    st.write(df_display)  # Show dataset with Yes/No for better readability

    st.subheader("๐Ÿ“Š Correlation Heatmap")
    plt.figure(figsize=(10,6))
    sns.heatmap(df.corr(), annot=True, cmap="coolwarm", fmt=".2f")
    st.pyplot(plt)

# 2๏ธโƒฃ **Tab 2: Model Performance**
with tab2:
    st.subheader("๐Ÿ“ˆ Model Performance")
    
    # Evaluate model
    y_pred = rf.predict(X_test_scaled)
    accuracy = accuracy_score(y_test, y_pred)
    st.write(f"### โšก Random Forest Accuracy: **{accuracy:.2f}**")

    # Confusion Matrix
    st.write("### ๐Ÿ“Š Confusion Matrix")
    cm = confusion_matrix(y_test, y_pred)
    plt.figure(figsize=(5,4))
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=["No Diabetes", "Diabetes"], yticklabels=["No Diabetes", "Diabetes"])
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    st.pyplot(plt)

    # ROC Curve
    st.write("### ๐Ÿ“‰ ROC Curve")
    fpr, tpr, _ = roc_curve(y_test, rf.predict_proba(X_test_scaled)[:,1])
    roc_auc = auc(fpr, tpr)
    plt.figure(figsize=(6,4))
    plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = {:.2f})'.format(roc_auc))
    plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title("Receiver Operating Characteristic (ROC) Curve")
    plt.legend(loc="lower right")
    st.pyplot(plt)

# 3๏ธโƒฃ **Tab 3: Prediction**
with tab3:
    st.subheader("๐Ÿฉบ Make a Prediction")

    # User inputs
    user_name = st.text_input("Patient Name", value="John Doe")
    user_gender = st.selectbox("Gender", label_encoders["gender"].classes_, key="gender_input")
    user_smoking = st.selectbox("Smoking History", label_encoders["smoking_history"].classes_, key="smoking_input")

    # Convert categorical inputs using label encoders
    user_gender_encoded = label_encoders["gender"].transform([user_gender])[0]
    user_smoking_encoded = label_encoders["smoking_history"].transform([user_smoking])[0]

    # User inputs numerical features
    user_data = [user_gender_encoded, user_smoking_encoded]
    for col in ["age", "bmi", "HbA1c_level", "blood_glucose_level"]:
        user_data.append(st.number_input(f"Enter {col}", float(df[col].min()), float(df[col].max()), float(df[col].mean())))

    # User inputs binary features
    user_binary_data = {}
    for col in ["hypertension", "heart_disease"]:
        user_binary_data[col] = st.radio(f"{col.replace('_', ' ').title()} (Yes/No)", ["No", "Yes"])

    # Convert "Yes"/"No" to numerical (0 or 1) before prediction
    for col in ["hypertension", "heart_disease"]:
        user_data.append(1 if user_binary_data[col] == "Yes" else 0)

    # Convert input into array
    user_data = np.array([user_data]).reshape(1, -1)

    # Predict button
    if st.button("๐Ÿ”ฎ Predict"):
        user_data_scaled = scaler.transform(user_data)
        
        # Prediction
        prediction = rf.predict(user_data_scaled)
        probability = rf.predict_proba(user_data_scaled)[:, 1][0]
        
        # Display result with patient name
        st.subheader(f"๐Ÿค– Prediction for {user_name}")
        if prediction[0] == 1:
            st.error(f"๐Ÿšจ **{user_name} is likely to have diabetes.** (Probability: {probability:.2f})")
        else:
            st.success(f"โœ… **{user_name} is not likely to have diabetes.** (Probability: {probability:.2f})")