|
import streamlit as st |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "FractalGPT/RuQwen2.5-3B-Instruct-AWQ" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
|
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(inputs.input_ids, max_length=512, do_sample=True, top_p=0.95, top_k=60) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
st.title("Чатбот с FractalGPT/RuQwen2.5-3B-Instruct-AWQ") |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
if prompt := st.chat_input("Введите ваше сообщение..."): |
|
|
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
|
|
with st.chat_message("assistant"): |
|
response = generate_response(prompt) |
|
st.markdown(response) |
|
|
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response}) |