Spaces:
Runtime error
Runtime error
initial commit
Browse files- app.py +108 -0
- requirements.txt +6 -0
- sac+logos+ava1-l14-linearMSE.pth +3 -0
app.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import pytorch_lightning as pl
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import clip
|
| 7 |
+
from PIL import Image, ImageFile
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
# if you changed the MLP architecture during training, change it also here:
|
| 11 |
+
class MLP(pl.LightningModule):
|
| 12 |
+
def __init__(self, input_size, xcol='emb', ycol='avg_rating'):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.input_size = input_size
|
| 15 |
+
self.xcol = xcol
|
| 16 |
+
self.ycol = ycol
|
| 17 |
+
self.layers = nn.Sequential(
|
| 18 |
+
nn.Linear(self.input_size, 1024),
|
| 19 |
+
#nn.ReLU(),
|
| 20 |
+
nn.Dropout(0.2),
|
| 21 |
+
nn.Linear(1024, 128),
|
| 22 |
+
#nn.ReLU(),
|
| 23 |
+
nn.Dropout(0.2),
|
| 24 |
+
nn.Linear(128, 64),
|
| 25 |
+
#nn.ReLU(),
|
| 26 |
+
nn.Dropout(0.1),
|
| 27 |
+
|
| 28 |
+
nn.Linear(64, 16),
|
| 29 |
+
#nn.ReLU(),
|
| 30 |
+
|
| 31 |
+
nn.Linear(16, 1)
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return self.layers(x)
|
| 36 |
+
|
| 37 |
+
def training_step(self, batch, batch_idx):
|
| 38 |
+
x = batch[self.xcol]
|
| 39 |
+
y = batch[self.ycol].reshape(-1, 1)
|
| 40 |
+
x_hat = self.layers(x)
|
| 41 |
+
loss = F.mse_loss(x_hat, y)
|
| 42 |
+
return loss
|
| 43 |
+
|
| 44 |
+
def validation_step(self, batch, batch_idx):
|
| 45 |
+
x = batch[self.xcol]
|
| 46 |
+
y = batch[self.ycol].reshape(-1, 1)
|
| 47 |
+
x_hat = self.layers(x)
|
| 48 |
+
loss = F.mse_loss(x_hat, y)
|
| 49 |
+
return loss
|
| 50 |
+
|
| 51 |
+
def configure_optimizers(self):
|
| 52 |
+
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
| 53 |
+
return optimizer
|
| 54 |
+
|
| 55 |
+
def normalized(a, axis=-1, order=2):
|
| 56 |
+
import numpy as np # pylint: disable=import-outside-toplevel
|
| 57 |
+
|
| 58 |
+
l2 = np.atleast_1d(np.linalg.norm(a, order, axis))
|
| 59 |
+
l2[l2 == 0] = 1
|
| 60 |
+
return a / np.expand_dims(l2, axis)
|
| 61 |
+
|
| 62 |
+
def load_models():
|
| 63 |
+
model = MLP(768)
|
| 64 |
+
s = torch.load("sac+logos+ava1-l14-linearMSE.pth")
|
| 65 |
+
|
| 66 |
+
model.load_state_dict(s)
|
| 67 |
+
model.to("cuda")
|
| 68 |
+
model.eval()
|
| 69 |
+
|
| 70 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 71 |
+
model2, preprocess = clip.load("ViT-L/14", device=device)
|
| 72 |
+
|
| 73 |
+
model_dict = {}
|
| 74 |
+
model_dict['classifier'] = model
|
| 75 |
+
model_dict['clip_model'] = model2
|
| 76 |
+
model_dict['clip_preprocess'] = preprocess
|
| 77 |
+
model_dict['device'] = device
|
| 78 |
+
|
| 79 |
+
return model_dict
|
| 80 |
+
|
| 81 |
+
def predict(image):
|
| 82 |
+
image_input = model_dict['clip_preprocess'](image).unsqueeze(0).to(model_dict['device'])
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
image_features = model_dict['clip_model'].encode_image(image_input)
|
| 85 |
+
im_emb_arr = normalized(image_features.detach().cpu().numpy())
|
| 86 |
+
prediction = model_dict['classifier'](torch.from_numpy(im_emb_arr).to(model_dict['device']).type(torch.cuda.FloatTensor))
|
| 87 |
+
score = prediction.item()
|
| 88 |
+
|
| 89 |
+
return {'aesthetic score': score}
|
| 90 |
+
|
| 91 |
+
if __name__ == '__main__':
|
| 92 |
+
print('\tinit models')
|
| 93 |
+
|
| 94 |
+
global model_dict
|
| 95 |
+
|
| 96 |
+
model_dict = load_models()
|
| 97 |
+
|
| 98 |
+
inputs = [gr.inputs.Image(type='pil', label='Image')]
|
| 99 |
+
|
| 100 |
+
outputs = gr.outputs.JSON()
|
| 101 |
+
|
| 102 |
+
title = 'image aesthetic predictor'
|
| 103 |
+
|
| 104 |
+
gr.Interface(predict,
|
| 105 |
+
inputs,
|
| 106 |
+
outputs,
|
| 107 |
+
title=title,
|
| 108 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ftfy
|
| 2 |
+
regex
|
| 3 |
+
git+https://github.com/openai/CLIP.git
|
| 4 |
+
gradio
|
| 5 |
+
torch
|
| 6 |
+
pytorch-lightning
|
sac+logos+ava1-l14-linearMSE.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:21dd590f3ccdc646f0d53120778b296013b096a035a2718c9cb0d511bff0f1e0
|
| 3 |
+
size 3714759
|