import streamlit as st import logging from streamlit_chat import message from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings, CacheBackedEmbeddings, HuggingFaceInstructEmbeddings from langchain.llms import LlamaCpp from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import PyPDFLoader from langchain.storage import LocalFileStore from langchain.llms import HuggingFaceHub from langchain.embeddings import HuggingFaceInstructEmbeddings from datetime import datetime import os import tempfile import requests # Import requests here now = datetime.now() underlying_embeddings = HuggingFaceEmbeddings() def initialize_session_state(): if 'history' not in st.session_state: st.session_state['history'] = [] if 'generated' not in st.session_state: st.session_state['generated'] = ["Hello! Ask me anything about 🤗"] if 'past' not in st.session_state: st.session_state['past'] = ["Hey! 👋"] def conversation_chat(query, chain, history): result = chain({"question": query, "chat_history": history}) history.append((query, result["answer"])) return result["answer"] def cache_checker(question, question_cache, chain): # Check if the response is already cached logging.info("I'm here") if question in question_cache: response = question_cache[question] logging.info("Response retrieved from cache.") else: # Perform the Q&A operation response = chain({"question": question}) question_cache[question] = response["answer"] logging.info("Response computed and cached.") return response["answer"] def display_chat_history(chain): reply_container = st.container() container = st.container() question_cache = {} with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Question:", placeholder="Ask about your PDF", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: with st.spinner('Generating response...'): output = conversation_chat(user_input, chain, st.session_state['history']) # Check if the question is being cached if user_input: if user_input in question_cache: st.info("Response retrieved from cache.") response = question_cache[user_input] else: st.info("Response computed.") response = cache_checker(user_input, question_cache, chain) question_cache[user_input] = response # Display the response st.write("Response:", response) st.session_state['past'].append(user_input) st.session_state['generated'].append(output) if st.session_state['generated']: with reply_container: for i in range(len(st.session_state['generated'])): message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs") message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji") def create_conversational_chain(vector_store): # Create llm llm = LlamaCpp( streaming=True, model_path="mistral-7b-instruct-v0.1.Q2_K.gguf", temperature=0.75, top_p=1, verbose=True, n_ctx=4096 ) # llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={ # "temperature": 0.75, # "n_ctx": 4096, # "streaming":True, # "top_p": 0.99, # "verbose": True, # "max_length": 4096 # }) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff', retriever=vector_store.as_retriever(search_kwargs={"k": 2}), memory=memory) return chain def main(): # Initialize session state initialize_session_state() st.title("Medbot :books:") # Initialize Streamlit st.sidebar.title("Document Processing") uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True) if uploaded_files: text = [] for file in uploaded_files: file_extension = os.path.splitext(file.name)[1] with tempfile.NamedTemporaryFile(delete=False) as temp_file: temp_file.write(file.read()) temp_file_path = temp_file.name # Initialize cache store cache_store = LocalFileStore("./cache/") loader = None if file_extension == ".pdf": loader = PyPDFLoader(temp_file_path) if loader: text.extend(loader.load()) os.remove(temp_file_path) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) text_chunks = text_splitter.split_documents(text) # Create embeddings embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}) # Create cache-backed embeddings cached_embeddings = CacheBackedEmbeddings.from_bytes_store(embeddings, cache_store, namespace="embeddings") # Cache the embeddings #cache_store.save("embeddings", cached_embeddings) # Create vector store vector_store = FAISS.from_documents(text_chunks, embedding=cached_embeddings) # Create the chain object chain = create_conversational_chain(vector_store) display_chat_history(chain) if __name__ == "__main__": main()