File size: 20,348 Bytes
ad915da 3c6aeb7 7ec068d 44ea2d4 d7d6438 ad915da 3c6aeb7 ad915da 4e73867 ad915da 44ea2d4 d7d6438 92a4ace d9795b9 92a4ace d9795b9 d7d6438 ad915da d7d6438 ad915da 7ec068d d9795b9 44ea2d4 d9795b9 d7d6438 44ea2d4 d9795b9 44ea2d4 d9795b9 d7d6438 92a4ace 44ea2d4 d9795b9 92a4ace 7ec068d d7d6438 d9795b9 d7d6438 d9795b9 d7d6438 d9795b9 4e73867 d7d6438 92a4ace d7d6438 7ec068d d7d6438 d9795b9 d7d6438 92a4ace d7d6438 92a4ace d7d6438 92a4ace 7ec068d 92a4ace 7ec068d d7d6438 92a4ace d7d6438 7ec068d d7d6438 ad915da 7ec068d d7d6438 ad915da 4e73867 ad915da 7ec068d 44ea2d4 4e73867 ad915da 4e73867 d9795b9 7ec068d c7f8633 4e73867 7ec068d d9795b9 7ec068d ad915da 7ec068d 4e73867 44ea2d4 7ec068d c7f8633 7ec068d 4e73867 7ec068d 4e73867 44ea2d4 d7d6438 4e73867 d7d6438 7ec068d c7f8633 4e73867 d7d6438 c7f8633 7ec068d c7f8633 4e73867 d7d6438 c7f8633 7ec068d c7f8633 7ec068d c7f8633 d9795b9 c7f8633 d7d6438 7ec068d c7f8633 4e73867 d7d6438 c7f8633 7ec068d d9795b9 c7f8633 d7d6438 c7f8633 9f029d4 381227f 9f029d4 7ec068d c7f8633 9f029d4 c7f8633 9f029d4 381227f c7f8633 ad915da 7ec068d ad915da 7ec068d d7d6438 9f029d4 381227f 9f029d4 c7f8633 9f029d4 7ec068d 3c6aeb7 7ec068d ad915da 3c6aeb7 ad915da 7ec068d ad915da 4e73867 d7d6438 ad915da 44ea2d4 ad915da 7ec068d 44ea2d4 4e73867 7ec068d ad915da d9795b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
import jiwer
import numpy as np
from functools import lru_cache
import traceback
import re
import string
from collections import Counter
# Cache the dataset loading to avoid reloading on refresh
@lru_cache(maxsize=1)
def load_data():
try:
# Load only the test dataset by specifying the split
dataset = load_dataset("GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction", split="test")
return dataset
except Exception as e:
print(f"Error loading dataset: {str(e)}")
# Try loading with explicit file path if the default loading fails
try:
dataset = load_dataset("parquet",
data_files="https://huggingface.co/datasets/GenSEC-LLM/SLT-Task1-Post-ASR-Text-Correction/resolve/main/data/test-00000-of-00001.parquet")
return dataset
except Exception as e2:
print(f"Error loading with explicit path: {str(e2)}")
raise
# Preprocess text for better WER calculation
def preprocess_text(text):
if not text or not isinstance(text, str):
return ""
# Convert to lowercase
text = text.lower()
# Remove punctuation
text = re.sub(r'[^\w\s]', '', text)
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text).strip()
return text
# Simple language model scoring - count n-grams
def score_hypothesis(hypothesis, n=4):
"""Score a hypothesis using simple n-gram statistics"""
if not hypothesis:
return 0
words = hypothesis.split()
if len(words) < n:
return len(words) # Just return word count for very short texts
# Count n-grams
ngrams = []
for i in range(len(words) - n + 1):
ngram = ' '.join(words[i:i+n])
ngrams.append(ngram)
# More unique n-grams might indicate better fluency
unique_ngrams = len(set(ngrams))
total_ngrams = len(ngrams)
# Score is a combination of length and n-gram variety
score = len(words) + unique_ngrams/max(1, total_ngrams) * 5
return score
# N-best LM ranking approach
def get_best_hypothesis_lm(hypotheses):
"""Choose the best hypothesis using a simple language model approach"""
if not hypotheses:
return ""
# Convert to list if it's not already
if isinstance(hypotheses, str):
return hypotheses
# Ensure we have a list of strings
hypothesis_list = []
for h in hypotheses:
if isinstance(h, str):
hypothesis_list.append(preprocess_text(h))
if not hypothesis_list:
return ""
# Score each hypothesis and choose the best one
scores = [(score_hypothesis(h), h) for h in hypothesis_list]
best_hypothesis = max(scores, key=lambda x: x[0])[1]
return best_hypothesis
# N-best correction approach
def correct_hypotheses(hypotheses):
"""Simple n-best correction by voting on words"""
if not hypotheses:
return ""
# Convert to list if it's not already
if isinstance(hypotheses, str):
return hypotheses
# Ensure we have a list of strings
hypothesis_list = []
for h in hypotheses:
if isinstance(h, str):
hypothesis_list.append(preprocess_text(h))
if not hypothesis_list:
return ""
# Split hypotheses into words
word_lists = [h.split() for h in hypothesis_list]
# Find the most common length
lengths = [len(words) for words in word_lists]
if not lengths:
return ""
most_common_length = Counter(lengths).most_common(1)[0][0]
# Only consider hypotheses with the most common length
filtered_word_lists = [words for words in word_lists if len(words) == most_common_length]
if not filtered_word_lists:
# Fall back to the longest hypothesis if filtering removed everything
return max(hypothesis_list, key=len)
# Vote on each word position
corrected_words = []
for i in range(most_common_length):
position_words = [words[i] for words in filtered_word_lists]
most_common_word = Counter(position_words).most_common(1)[0][0]
corrected_words.append(most_common_word)
# Join the corrected words
return ' '.join(corrected_words)
# Fix the Levenshtein distance calculation to avoid dependence on jiwer internals
def calculate_simple_wer(reference, hypothesis):
"""Calculate WER using a simple word-based approach"""
if not reference or not hypothesis:
return 1.0 # Maximum error if either is empty
# Split into words
ref_words = reference.split()
hyp_words = hypothesis.split()
# Use editdistance package instead of jiwer internals
try:
import editdistance
distance = editdistance.eval(ref_words, hyp_words)
except ImportError:
# Fallback to simple jiwer calculation
try:
# Try using the standard jiwer implementation
wer_value = jiwer.wer(reference, hypothesis)
return wer_value
except Exception:
# If all else fails, return 1.0 (maximum error)
print("Error calculating WER - fallback to maximum error")
return 1.0
# WER calculation
if len(ref_words) == 0:
return 1.0
return float(distance) / float(len(ref_words))
# Calculate WER for a group of examples with multiple methods
def calculate_wer_methods(examples):
if not examples:
return 0.0, 0.0, 0.0
try:
# Check if examples is a Dataset or a list
is_dataset = hasattr(examples, 'features')
# Get the first example for inspection
if is_dataset and len(examples) > 0:
example = examples[0]
elif not is_dataset and len(examples) > 0:
example = examples[0]
else:
print("No examples found")
return np.nan, np.nan, np.nan
print("\n===== EXAMPLE DATA INSPECTION =====")
print(f"Keys in example: {example.keys()}")
# Try different possible field names
possible_reference_fields = ["transcription", "reference", "ground_truth", "target"]
possible_hypothesis_fields = ["input1", "hypothesis", "asr_output", "source_text"]
for field in possible_reference_fields:
if field in example:
print(f"Reference field '{field}' found with value: {str(example[field])[:100]}...")
for field in possible_hypothesis_fields:
if field in example:
print(f"Hypothesis field '{field}' found with value: {str(example[field])[:100]}...")
# Process each example in the dataset
wer_values_no_lm = []
wer_values_lm_ranking = []
wer_values_n_best_correction = []
valid_count = 0
skipped_count = 0
# Determine how to iterate based on type
items_to_process = examples
if is_dataset:
# Limit to first 200 examples for efficiency
items_to_process = examples.select(range(min(200, len(examples))))
else:
items_to_process = examples[:200] # First 200 examples
for i, ex in enumerate(items_to_process):
try:
# Get reference transcription
transcription = ex.get("transcription")
if not transcription or not isinstance(transcription, str):
skipped_count += 1
continue
# Process the reference
reference = preprocess_text(transcription)
if not reference:
skipped_count += 1
continue
# Get 1-best hypothesis for baseline
input1 = ex.get("input1")
if input1 is None and "hypothesis" in ex and ex["hypothesis"]:
if isinstance(ex["hypothesis"], list) and len(ex["hypothesis"]) > 0:
input1 = ex["hypothesis"][0]
elif isinstance(ex["hypothesis"], str):
input1 = ex["hypothesis"]
# Get n-best hypotheses for other methods
n_best_hypotheses = ex.get("hypothesis", [])
# Process and evaluate all methods
# Method 1: No LM (1-best ASR output)
if input1 and isinstance(input1, str):
no_lm_hyp = preprocess_text(input1)
if no_lm_hyp:
wer_no_lm = calculate_simple_wer(reference, no_lm_hyp)
wer_values_no_lm.append(wer_no_lm)
# Method 2: LM ranking (best of n-best)
if n_best_hypotheses:
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
if lm_best_hyp:
wer_lm = calculate_simple_wer(reference, lm_best_hyp)
wer_values_lm_ranking.append(wer_lm)
# Method 3: N-best correction (voting among n-best)
if n_best_hypotheses:
corrected_hyp = correct_hypotheses(n_best_hypotheses)
if corrected_hyp:
wer_corrected = calculate_simple_wer(reference, corrected_hyp)
wer_values_n_best_correction.append(wer_corrected)
# Count as valid if at least one method worked
if (wer_values_no_lm and i == len(wer_values_no_lm) - 1) or \
(wer_values_lm_ranking and i == len(wer_values_lm_ranking) - 1) or \
(wer_values_n_best_correction and i == len(wer_values_n_best_correction) - 1):
valid_count += 1
else:
skipped_count += 1
# Print debug info for a few examples
if i < 2:
print(f"\nExample {i} inspection:")
print(f" Reference: '{reference}'")
if input1 and isinstance(input1, str):
no_lm_hyp = preprocess_text(input1)
print(f" No LM (1-best): '{no_lm_hyp}'")
if no_lm_hyp:
wer = calculate_simple_wer(reference, no_lm_hyp)
print(f" No LM WER: {wer:.4f}")
if n_best_hypotheses:
print(f" N-best count: {len(n_best_hypotheses) if isinstance(n_best_hypotheses, list) else 'not a list'}")
lm_best_hyp = get_best_hypothesis_lm(n_best_hypotheses)
print(f" LM ranking best: '{lm_best_hyp}'")
if lm_best_hyp:
wer = calculate_simple_wer(reference, lm_best_hyp)
print(f" LM ranking WER: {wer:.4f}")
corrected_hyp = correct_hypotheses(n_best_hypotheses)
print(f" N-best correction: '{corrected_hyp}'")
if corrected_hyp:
wer = calculate_simple_wer(reference, corrected_hyp)
print(f" N-best correction WER: {wer:.4f}")
except Exception as ex_error:
print(f"Error processing example {i}: {str(ex_error)}")
skipped_count += 1
continue
# Calculate average WER for each method
print(f"\nProcessing summary: Valid pairs: {valid_count}, Skipped: {skipped_count}")
no_lm_wer = np.mean(wer_values_no_lm) if wer_values_no_lm else np.nan
lm_ranking_wer = np.mean(wer_values_lm_ranking) if wer_values_lm_ranking else np.nan
n_best_correction_wer = np.mean(wer_values_n_best_correction) if wer_values_n_best_correction else np.nan
print(f"Calculated WERs:")
print(f" No LM: {len(wer_values_no_lm)} pairs, avg WER: {no_lm_wer:.4f}")
print(f" LM Ranking: {len(wer_values_lm_ranking)} pairs, avg WER: {lm_ranking_wer:.4f}")
print(f" N-best Correction: {len(wer_values_n_best_correction)} pairs, avg WER: {n_best_correction_wer:.4f}")
return no_lm_wer, lm_ranking_wer, n_best_correction_wer
except Exception as e:
print(f"Error in calculate_wer: {str(e)}")
print(traceback.format_exc())
return np.nan, np.nan, np.nan
# Get WER metrics by source
def get_wer_metrics(dataset):
try:
# Print dataset info
print(f"\n===== DATASET INFO =====")
print(f"Dataset size: {len(dataset)}")
print(f"Dataset features: {dataset.features}")
# Group examples by source
examples_by_source = {}
# Process all examples
for i, ex in enumerate(dataset):
try:
source = ex.get("source", "unknown")
# Skip all_et05_real as requested
if source == "all_et05_real":
continue
if source not in examples_by_source:
examples_by_source[source] = []
examples_by_source[source].append(ex)
except Exception as e:
print(f"Error processing example {i}: {str(e)}")
continue
# Get all unique sources
all_sources = sorted(examples_by_source.keys())
print(f"Found sources: {all_sources}")
# Calculate metrics for each source
source_results = {}
for source in all_sources:
try:
examples = examples_by_source.get(source, [])
count = len(examples)
if count > 0:
print(f"\nCalculating WER for source {source} with {count} examples")
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(examples)
else:
no_lm_wer, lm_ranking_wer, n_best_wer = np.nan, np.nan, np.nan
source_results[source] = {
"Count": count,
"No LM Baseline": no_lm_wer,
"N-best LM Ranking": lm_ranking_wer,
"N-best Correction": n_best_wer
}
except Exception as e:
print(f"Error processing source {source}: {str(e)}")
source_results[source] = {
"Count": 0,
"No LM Baseline": np.nan,
"N-best LM Ranking": np.nan,
"N-best Correction": np.nan
}
# Calculate overall metrics with a sample but excluding all_et05_real
try:
# Create a filtered dataset without all_et05_real
filtered_dataset = [ex for ex in dataset if ex.get("source") != "all_et05_real"]
total_count = len(filtered_dataset)
print(f"\nCalculating overall WER with a sample of examples (excluding all_et05_real)")
# Sample for calculation
sample_size = min(500, total_count)
sample_dataset = filtered_dataset[:sample_size]
no_lm_wer, lm_ranking_wer, n_best_wer = calculate_wer_methods(sample_dataset)
source_results["OVERALL"] = {
"Count": total_count,
"No LM Baseline": no_lm_wer,
"N-best LM Ranking": lm_ranking_wer,
"N-best Correction": n_best_wer
}
except Exception as e:
print(f"Error calculating overall metrics: {str(e)}")
print(traceback.format_exc())
source_results["OVERALL"] = {
"Count": len(filtered_dataset),
"No LM Baseline": np.nan,
"N-best LM Ranking": np.nan,
"N-best Correction": np.nan
}
# Create flat DataFrame with labels in the first column
rows = []
# First add row for number of examples
example_row = {"Metric": "Number of Examples"}
for source in all_sources + ["OVERALL"]:
example_row[source] = source_results[source]["Count"]
rows.append(example_row)
# Then add rows for each WER method
no_lm_row = {"Metric": "Word Error Rate (No LM)"}
lm_ranking_row = {"Metric": "Word Error Rate (N-best LM Ranking)"}
n_best_row = {"Metric": "Word Error Rate (N-best Correction)"}
for source in all_sources + ["OVERALL"]:
no_lm_row[source] = source_results[source]["No LM Baseline"]
lm_ranking_row[source] = source_results[source]["N-best LM Ranking"]
n_best_row[source] = source_results[source]["N-best Correction"]
rows.append(no_lm_row)
rows.append(lm_ranking_row)
rows.append(n_best_row)
# Create DataFrame from rows
result_df = pd.DataFrame(rows)
return result_df
except Exception as e:
print(f"Error in get_wer_metrics: {str(e)}")
print(traceback.format_exc())
return pd.DataFrame([{"Error": str(e)}])
# Format the dataframe for display
def format_dataframe(df):
try:
# Use vectorized operations instead of apply
df = df.copy()
# Find the rows containing WER values
wer_row_indices = []
for i, metric in enumerate(df["Metric"]):
if "WER" in metric or "Error Rate" in metric:
wer_row_indices.append(i)
# Format WER values
for idx in wer_row_indices:
for col in df.columns:
if col != "Metric": # Skip the metric column
value = df.loc[idx, col]
if pd.notna(value):
df.loc[idx, col] = f"{value:.4f}"
else:
df.loc[idx, col] = "N/A"
return df
except Exception as e:
print(f"Error in format_dataframe: {str(e)}")
print(traceback.format_exc())
return pd.DataFrame([{"Error": str(e)}])
# Main function to create the leaderboard
def create_leaderboard():
try:
dataset = load_data()
metrics_df = get_wer_metrics(dataset)
return format_dataframe(metrics_df)
except Exception as e:
error_msg = f"Error creating leaderboard: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return pd.DataFrame([{"Error": error_msg}])
# Create the Gradio interface
with gr.Blocks(title="ASR Text Correction Test Leaderboard") as demo:
gr.Markdown("# ASR Text Correction Baseline WER Leaderboard (Test Data)")
gr.Markdown("Word Error Rate (WER) metrics for different speech sources with multiple correction approaches")
with gr.Row():
refresh_btn = gr.Button("Refresh Leaderboard")
with gr.Row():
error_output = gr.Textbox(label="Debug Information", visible=True, lines=10)
with gr.Row():
try:
initial_df = create_leaderboard()
leaderboard = gr.DataFrame(initial_df)
except Exception as e:
error_msg = f"Error initializing leaderboard: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
error_output.update(value=error_msg)
leaderboard = gr.DataFrame(pd.DataFrame([{"Error": error_msg}]))
def refresh_and_report():
try:
df = create_leaderboard()
debug_info = "Leaderboard refreshed successfully. Check console for detailed debug information."
return df, debug_info
except Exception as e:
error_msg = f"Error refreshing leaderboard: {str(e)}\n{traceback.format_exc()}"
print(error_msg)
return pd.DataFrame([{"Error": error_msg}]), error_msg
refresh_btn.click(refresh_and_report, outputs=[leaderboard, error_output])
if __name__ == "__main__":
demo.launch() |