Spaces:
Sleeping
Sleeping
Initial commit
Browse files- app.py +28 -8
- requirements.txt +3 -1
app.py
CHANGED
|
@@ -1,26 +1,46 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def generate(prompt):
|
| 6 |
API_URL = "https://api-inference.huggingface.co/models/GenAIJake/d3xt3r-l1tt13-dachshund"
|
| 7 |
-
headers = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
payload = {
|
| 9 |
-
"inputs":
|
| 10 |
"parameters": {
|
| 11 |
"num_inference_steps": 30,
|
| 12 |
"guidance_scale": 7.5,
|
| 13 |
-
"negative_prompt":
|
|
|
|
| 14 |
}
|
| 15 |
}
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
|
|
|
| 19 |
demo = gr.Interface(
|
| 20 |
fn=generate,
|
| 21 |
-
inputs="
|
| 22 |
-
outputs="
|
| 23 |
-
title="D3xt3r L1tt13 Dachshund Generator"
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import requests
|
| 3 |
import os
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
|
| 7 |
def generate(prompt):
|
| 8 |
API_URL = "https://api-inference.huggingface.co/models/GenAIJake/d3xt3r-l1tt13-dachshund"
|
| 9 |
+
headers = {
|
| 10 |
+
"Authorization": f"Bearer {os.getenv('HF_TOKEN')}",
|
| 11 |
+
"Content-Type": "application/json",
|
| 12 |
+
"x-use-cache": "false", # Disable caching for new generations
|
| 13 |
+
"x-wait-for-model": "true" # Wait for model if it needs to load
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
# Add the trigger words to the prompt
|
| 17 |
+
full_prompt = f"d3xt3r-l1tt13 Dachshund, {prompt}"
|
| 18 |
+
|
| 19 |
payload = {
|
| 20 |
+
"inputs": full_prompt,
|
| 21 |
"parameters": {
|
| 22 |
"num_inference_steps": 30,
|
| 23 |
"guidance_scale": 7.5,
|
| 24 |
+
"negative_prompt": "blurry, bad quality, worst quality, low quality",
|
| 25 |
+
"seed": None # Random seed for each generation
|
| 26 |
}
|
| 27 |
}
|
| 28 |
+
|
| 29 |
+
try:
|
| 30 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 31 |
+
# Convert the binary response to a PIL Image
|
| 32 |
+
image = Image.open(io.BytesIO(response.content))
|
| 33 |
+
return image
|
| 34 |
+
except Exception as e:
|
| 35 |
+
return f"Error generating image: {str(e)}"
|
| 36 |
|
| 37 |
+
# Create the Gradio interface
|
| 38 |
demo = gr.Interface(
|
| 39 |
fn=generate,
|
| 40 |
+
inputs=gr.Textbox(label="Enter your prompt"),
|
| 41 |
+
outputs=gr.Image(label="Generated Image"),
|
| 42 |
+
title="D3xt3r L1tt13 Dachshund Generator",
|
| 43 |
+
description="Generate images of a cute dachshund character. The model will automatically add 'd3xt3r-l1tt13 Dachshund' to your prompt."
|
| 44 |
)
|
| 45 |
|
| 46 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -3,4 +3,6 @@ diffusers
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
-
xformers
|
|
|
|
|
|
|
|
|
| 3 |
invisible_watermark
|
| 4 |
torch
|
| 5 |
transformers
|
| 6 |
+
xformers
|
| 7 |
+
gradio>=4.43.0
|
| 8 |
+
requests
|