Update app.py
Browse files
app.py
CHANGED
@@ -15,30 +15,24 @@ from huggingface_hub import HfApi
|
|
15 |
# Load token from Hugging Face Secrets
|
16 |
HF_TOKEN = os.environ.get("RedditSemanticSearch")
|
17 |
|
18 |
-
# Function to stream JSONL Reddit files from HF Hub
|
19 |
from datasets import load_dataset
|
|
|
20 |
|
21 |
# Define target subreddits
|
22 |
target_subreddits = ["askscience", "gaming", "technology", "todayilearned", "programming"]
|
23 |
|
24 |
-
# Load
|
25 |
-
|
26 |
-
|
27 |
-
# Filter only relevant subreddits
|
28 |
-
dataset = dataset.filter(lambda x: x["subreddit"] in target_subreddits)
|
29 |
-
|
30 |
-
# Take a sample (to limit memory for now)
|
31 |
-
comments = [{"body": ex["body"]} for ex in dataset.select(range(100000))]
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
from itertools import islice
|
36 |
|
37 |
-
#
|
38 |
-
comments =
|
39 |
|
40 |
-
#
|
41 |
-
df = pd.DataFrame(comments)
|
42 |
|
43 |
# Clean text function
|
44 |
def clean_body(text):
|
@@ -59,13 +53,8 @@ df_chunked.rename(columns={"clean": "chunk_text"}, inplace=True)
|
|
59 |
# Final list for embedding
|
60 |
chunked_comments = df_chunked["chunk_text"].tolist()
|
61 |
|
62 |
-
# Create subreddit labels
|
63 |
-
|
64 |
-
subreddit_labels = []
|
65 |
-
for example in combined_dataset:
|
66 |
-
subreddit_labels.append(example["subreddit_name_prefixed"])
|
67 |
-
if len(subreddit_labels) >= len(chunked_comments):
|
68 |
-
break
|
69 |
|
70 |
# Tokenize
|
71 |
def clean_text(text):
|
|
|
15 |
# Load token from Hugging Face Secrets
|
16 |
HF_TOKEN = os.environ.get("RedditSemanticSearch")
|
17 |
|
|
|
18 |
from datasets import load_dataset
|
19 |
+
from itertools import islice
|
20 |
|
21 |
# Define target subreddits
|
22 |
target_subreddits = ["askscience", "gaming", "technology", "todayilearned", "programming"]
|
23 |
|
24 |
+
# Load streaming dataset for each subreddit and combine
|
25 |
+
def stream_subreddit_data(subreddit):
|
26 |
+
return load_dataset("HuggingFaceGECLM/REDDIT_comments", split=subreddit, streaming=True)
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Combine streams
|
29 |
+
combined_dataset = chain(*(stream_subreddit_data(sub) for sub in target_subreddits))
|
|
|
30 |
|
31 |
+
# Sample up to 100,000 comments from the combined stream
|
32 |
+
comments = list(islice(combined_dataset, 100000))
|
33 |
|
34 |
+
# Extract text and subreddit
|
35 |
+
df = pd.DataFrame([{"body": ex["body"], "subreddit": ex["subreddit"]} for ex in comments])
|
36 |
|
37 |
# Clean text function
|
38 |
def clean_body(text):
|
|
|
53 |
# Final list for embedding
|
54 |
chunked_comments = df_chunked["chunk_text"].tolist()
|
55 |
|
56 |
+
# Create subreddit labels (reused from original list)
|
57 |
+
subreddit_labels = df["subreddit"].tolist()[:len(chunked_comments)]
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
# Tokenize
|
60 |
def clean_text(text):
|