Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,30 +2,35 @@ import spaces
|
|
| 2 |
import gradio as gr
|
| 3 |
import re
|
| 4 |
from PIL import Image
|
| 5 |
-
|
| 6 |
import os
|
| 7 |
import numpy as np
|
| 8 |
import torch
|
| 9 |
-
from diffusers import FluxImg2ImgPipeline
|
| 10 |
-
|
| 11 |
-
dtype = torch.bfloat16
|
| 12 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 13 |
-
|
| 14 |
-
pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
|
| 15 |
|
|
|
|
|
|
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
def sanitize_prompt(prompt):
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
return sanitized_prompt
|
| 23 |
|
| 24 |
-
def convert_to_fit_size(original_width_and_height, maximum_size
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
if width <= maximum_size and height <= maximum_size:
|
| 27 |
-
return width,height
|
| 28 |
-
|
| 29 |
if width > height:
|
| 30 |
scaling_factor = maximum_size / width
|
| 31 |
else:
|
|
@@ -36,52 +41,123 @@ def convert_to_fit_size(original_width_and_height, maximum_size = 1024):
|
|
| 36 |
return new_width, new_height
|
| 37 |
|
| 38 |
def adjust_to_multiple_of_32(width: int, height: int):
|
|
|
|
|
|
|
|
|
|
| 39 |
width = width - (width % 32)
|
| 40 |
height = height - (height % 32)
|
| 41 |
-
return width, height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
@spaces.GPU(duration=120)
|
| 47 |
-
def process_images(
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
progress(0, desc="Starting")
|
| 50 |
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
generator = torch.Generator(device).manual_seed(seed)
|
| 57 |
-
fit_width, fit_height = convert_to_fit_size(image.size)
|
| 58 |
-
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
| 59 |
-
image = image.resize((width, height), Image.LANCZOS)
|
| 60 |
-
|
| 61 |
-
output = pipe(prompt=prompt, image=image, generator=generator, strength=strength, width=width, height=height,
|
| 62 |
-
guidance_scale=0, num_inference_steps=num_inference_steps, max_sequence_length=256)
|
| 63 |
-
|
| 64 |
-
pil_image = output.images[0]
|
| 65 |
-
new_width, new_height = pil_image.size
|
| 66 |
-
|
| 67 |
-
if (new_width != fit_width) or (new_height != fit_height):
|
| 68 |
-
resized_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
| 69 |
-
return resized_image
|
| 70 |
-
return pil_image
|
| 71 |
-
|
| 72 |
-
output = process_img2img(image, prompt, strength, seed, inference_step)
|
| 73 |
-
return output
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
|
|
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
#col-left {
|
| 86 |
margin: 0 auto;
|
| 87 |
max-width: 640px;
|
|
@@ -96,67 +172,100 @@ css="""
|
|
| 96 |
justify-content: center;
|
| 97 |
gap:10px
|
| 98 |
}
|
| 99 |
-
|
| 100 |
.image {
|
| 101 |
width: 128px;
|
| 102 |
height: 128px;
|
| 103 |
object-fit: cover;
|
| 104 |
}
|
| 105 |
-
|
| 106 |
.text {
|
| 107 |
font-size: 16px;
|
| 108 |
}
|
| 109 |
-
|
| 110 |
"""
|
| 111 |
|
| 112 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
| 113 |
-
|
|
|
|
| 114 |
gr.HTML(read_file("demo_header.html"))
|
|
|
|
|
|
|
|
|
|
| 115 |
gr.HTML(read_file("demo_tools.html"))
|
|
|
|
|
|
|
|
|
|
| 116 |
with gr.Row():
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
|
|
|
| 139 |
gr.Examples(
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
]
|
| 146 |
-
,
|
| 147 |
-
inputs=[image,image_out,prompt],
|
| 148 |
-
)
|
| 149 |
-
gr.HTML(
|
| 150 |
-
gr.HTML(read_file("demo_footer.html"))
|
| 151 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
gr.on(
|
| 153 |
triggers=[btn.click, prompt.submit],
|
| 154 |
-
fn
|
| 155 |
-
inputs
|
| 156 |
-
outputs
|
| 157 |
)
|
| 158 |
|
| 159 |
if __name__ == "__main__":
|
| 160 |
demo.launch(share=True, show_error=True)
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import re
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
import os
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# We'll lazy-load FluxImg2ImgPipeline
|
| 10 |
+
from diffusers import FluxImg2ImgPipeline
|
| 11 |
|
| 12 |
+
###############################################################################
|
| 13 |
+
# GLOBAL PIPELINE REFERENCE (start as None, so we only load on first inference)
|
| 14 |
+
###############################################################################
|
| 15 |
+
pipe = None
|
| 16 |
|
| 17 |
+
###############################################################################
|
| 18 |
+
# HELPER FUNCTIONS
|
| 19 |
+
###############################################################################
|
| 20 |
def sanitize_prompt(prompt):
|
| 21 |
+
# Allow only alphanumeric characters, spaces, and basic punctuation
|
| 22 |
+
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
|
| 23 |
+
return allowed_chars.sub("", prompt)
|
|
|
|
| 24 |
|
| 25 |
+
def convert_to_fit_size(original_width_and_height, maximum_size=512):
|
| 26 |
+
"""
|
| 27 |
+
Resizes the image so its largest dimension = maximum_size (default 512).
|
| 28 |
+
Lower resolution => less VRAM usage.
|
| 29 |
+
"""
|
| 30 |
+
width, height = original_width_and_height
|
| 31 |
if width <= maximum_size and height <= maximum_size:
|
| 32 |
+
return width, height
|
| 33 |
+
|
| 34 |
if width > height:
|
| 35 |
scaling_factor = maximum_size / width
|
| 36 |
else:
|
|
|
|
| 41 |
return new_width, new_height
|
| 42 |
|
| 43 |
def adjust_to_multiple_of_32(width: int, height: int):
|
| 44 |
+
"""
|
| 45 |
+
Snap dimensions down to multiples of 32 (common for diffusion pipelines).
|
| 46 |
+
"""
|
| 47 |
width = width - (width % 32)
|
| 48 |
height = height - (height % 32)
|
| 49 |
+
return max(width, 32), max(height, 32)
|
| 50 |
+
|
| 51 |
+
def load_flux_pipeline():
|
| 52 |
+
"""
|
| 53 |
+
Lazy-load the FluxImg2ImgPipeline in float16 with memory-saving features.
|
| 54 |
+
"""
|
| 55 |
+
global pipe
|
| 56 |
+
if pipe is not None:
|
| 57 |
+
return pipe # Already loaded
|
| 58 |
|
| 59 |
+
print("Loading FluxImg2ImgPipeline in float16...")
|
| 60 |
+
|
| 61 |
+
# 1) Load the pipeline using float16
|
| 62 |
+
local_pipe = FluxImg2ImgPipeline.from_pretrained(
|
| 63 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 64 |
+
torch_dtype=torch.float16, # IMPORTANT: no bfloat16
|
| 65 |
+
low_cpu_mem_usage=True
|
| 66 |
+
)
|
| 67 |
+
local_pipe.to("cuda")
|
| 68 |
|
| 69 |
+
# 2) Enable memory-efficient attention (xFormers), if installed
|
| 70 |
+
try:
|
| 71 |
+
local_pipe.enable_xformers_memory_efficient_attention()
|
| 72 |
+
print("xFormers memory efficient attention enabled.")
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print("Could not enable xFormers:", e)
|
| 75 |
|
| 76 |
+
# 3) CPU offload (keeps only active layers on GPU)
|
| 77 |
+
try:
|
| 78 |
+
local_pipe.enable_model_cpu_offload()
|
| 79 |
+
print("CPU offload enabled.")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print("Could not enable model_cpu_offload:", e)
|
| 82 |
|
| 83 |
+
# 4) VAE slicing reduces peak memory usage
|
| 84 |
+
local_pipe.enable_vae_slicing()
|
| 85 |
+
|
| 86 |
+
# 5) Optionally set max sequence length (like your original code)
|
| 87 |
+
local_pipe.max_sequence_length = 256
|
| 88 |
+
|
| 89 |
+
pipe = local_pipe
|
| 90 |
+
print("Flux pipeline loaded successfully (float16).")
|
| 91 |
+
return pipe
|
| 92 |
+
|
| 93 |
+
###############################################################################
|
| 94 |
+
# MAIN INFERENCE FUNCTION
|
| 95 |
+
###############################################################################
|
| 96 |
@spaces.GPU(duration=120)
|
| 97 |
+
def process_images(
|
| 98 |
+
image,
|
| 99 |
+
prompt="a girl",
|
| 100 |
+
strength=0.75,
|
| 101 |
+
seed=0,
|
| 102 |
+
inference_step=4,
|
| 103 |
+
progress=gr.Progress(track_tqdm=True)
|
| 104 |
+
):
|
| 105 |
progress(0, desc="Starting")
|
| 106 |
|
| 107 |
+
# 1) Lazy-load the pipeline
|
| 108 |
+
local_pipe = load_flux_pipeline()
|
| 109 |
|
| 110 |
+
# 2) If no image provided
|
| 111 |
+
if image is None:
|
| 112 |
+
print("No input image provided.")
|
| 113 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
+
# 3) Resize input to reduce VRAM usage
|
| 116 |
+
fit_width, fit_height = convert_to_fit_size(image.size, maximum_size=512)
|
| 117 |
+
width, height = adjust_to_multiple_of_32(fit_width, fit_height)
|
| 118 |
+
|
| 119 |
+
# Use high-quality Lanczos resizing
|
| 120 |
+
image = image.resize((width, height), Image.LANCZOS)
|
| 121 |
|
| 122 |
+
# 4) Create generator for reproducibility
|
| 123 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
| 124 |
|
| 125 |
+
# 5) Actually run flux img2img
|
| 126 |
+
progress(50, desc="Running flux img2img")
|
| 127 |
+
print(f"Prompt: {prompt}, strength={strength}, steps={inference_step}")
|
| 128 |
+
|
| 129 |
+
output = local_pipe(
|
| 130 |
+
prompt=prompt,
|
| 131 |
+
image=image,
|
| 132 |
+
generator=generator,
|
| 133 |
+
strength=strength,
|
| 134 |
+
guidance_scale=0, # same as your original code
|
| 135 |
+
num_inference_steps=inference_step,
|
| 136 |
+
# We don't explicitly pass width & height. If you want, remove them or keep them:
|
| 137 |
+
# width=width,
|
| 138 |
+
# height=height,
|
| 139 |
+
)
|
| 140 |
|
| 141 |
+
pil_image = output.images[0]
|
| 142 |
+
|
| 143 |
+
# 6) If the new image was forcibly changed shape by the model,
|
| 144 |
+
# we can re-resize back to (fit_width, fit_height).
|
| 145 |
+
# Usually not necessary with flux, but keep the logic if you want.
|
| 146 |
+
new_w, new_h = pil_image.size
|
| 147 |
+
if (new_w != fit_width) or (new_h != fit_height):
|
| 148 |
+
pil_image = pil_image.resize((fit_width, fit_height), Image.LANCZOS)
|
| 149 |
+
|
| 150 |
+
progress(100, desc="Done")
|
| 151 |
+
return pil_image
|
| 152 |
+
|
| 153 |
+
###############################################################################
|
| 154 |
+
# GRADIO APP
|
| 155 |
+
###############################################################################
|
| 156 |
+
def read_file(path: str) -> str:
|
| 157 |
+
with open(path, 'r', encoding='utf-8') as f:
|
| 158 |
+
return f.read()
|
| 159 |
+
|
| 160 |
+
css = """
|
| 161 |
#col-left {
|
| 162 |
margin: 0 auto;
|
| 163 |
max-width: 640px;
|
|
|
|
| 172 |
justify-content: center;
|
| 173 |
gap:10px
|
| 174 |
}
|
|
|
|
| 175 |
.image {
|
| 176 |
width: 128px;
|
| 177 |
height: 128px;
|
| 178 |
object-fit: cover;
|
| 179 |
}
|
|
|
|
| 180 |
.text {
|
| 181 |
font-size: 16px;
|
| 182 |
}
|
|
|
|
| 183 |
"""
|
| 184 |
|
| 185 |
with gr.Blocks(css=css, elem_id="demo-container") as demo:
|
| 186 |
+
# Optionally load some HTML from files
|
| 187 |
+
try:
|
| 188 |
gr.HTML(read_file("demo_header.html"))
|
| 189 |
+
except:
|
| 190 |
+
pass
|
| 191 |
+
try:
|
| 192 |
gr.HTML(read_file("demo_tools.html"))
|
| 193 |
+
except:
|
| 194 |
+
pass
|
| 195 |
+
|
| 196 |
with gr.Row():
|
| 197 |
+
with gr.Column():
|
| 198 |
+
image = gr.Image(
|
| 199 |
+
height=800,
|
| 200 |
+
sources=['upload','clipboard'],
|
| 201 |
+
image_mode='RGB',
|
| 202 |
+
elem_id="image_upload",
|
| 203 |
+
type="pil",
|
| 204 |
+
label="Upload"
|
| 205 |
+
)
|
| 206 |
+
with gr.Row(elem_id="prompt-container", equal_height=False):
|
| 207 |
+
prompt = gr.Textbox(
|
| 208 |
+
label="Prompt",
|
| 209 |
+
value="a woman",
|
| 210 |
+
placeholder="Enter your prompt here",
|
| 211 |
+
elem_id="prompt"
|
| 212 |
+
)
|
| 213 |
+
btn = gr.Button("Img2Img", elem_id="run_button", variant="primary")
|
| 214 |
+
|
| 215 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
| 216 |
+
with gr.Row(equal_height=True):
|
| 217 |
+
strength = gr.Number(
|
| 218 |
+
value=0.75,
|
| 219 |
+
minimum=0,
|
| 220 |
+
maximum=0.75,
|
| 221 |
+
step=0.01,
|
| 222 |
+
label="strength"
|
| 223 |
+
)
|
| 224 |
+
seed = gr.Number(
|
| 225 |
+
value=100,
|
| 226 |
+
minimum=0,
|
| 227 |
+
step=1,
|
| 228 |
+
label="seed"
|
| 229 |
+
)
|
| 230 |
+
inference_step = gr.Number(
|
| 231 |
+
value=4,
|
| 232 |
+
minimum=1,
|
| 233 |
+
step=1,
|
| 234 |
+
label="inference_step"
|
| 235 |
+
)
|
| 236 |
+
id_input = gr.Text(label="Name", visible=False)
|
| 237 |
+
|
| 238 |
+
with gr.Column():
|
| 239 |
+
image_out = gr.Image(
|
| 240 |
+
height=800,
|
| 241 |
+
sources=[],
|
| 242 |
+
label="Output",
|
| 243 |
+
elem_id="output-img",
|
| 244 |
+
format="jpg"
|
| 245 |
+
)
|
| 246 |
|
| 247 |
+
# Provide example inputs if desired
|
| 248 |
gr.Examples(
|
| 249 |
+
examples=[
|
| 250 |
+
["examples/draw_input.jpg", None, "a woman, eyes closed, mouth opened"],
|
| 251 |
+
["examples/gimp_input.jpg", None, "a woman, hand on neck"]
|
| 252 |
+
],
|
| 253 |
+
inputs=[image, image_out, prompt],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
)
|
| 255 |
+
|
| 256 |
+
# Possibly load a footer HTML
|
| 257 |
+
try:
|
| 258 |
+
gr.HTML(read_file("demo_footer.html"))
|
| 259 |
+
except:
|
| 260 |
+
pass
|
| 261 |
+
|
| 262 |
+
# Link UI events to process_images
|
| 263 |
gr.on(
|
| 264 |
triggers=[btn.click, prompt.submit],
|
| 265 |
+
fn=process_images,
|
| 266 |
+
inputs=[image, prompt, strength, seed, inference_step],
|
| 267 |
+
outputs=[image_out]
|
| 268 |
)
|
| 269 |
|
| 270 |
if __name__ == "__main__":
|
| 271 |
demo.launch(share=True, show_error=True)
|
|
|
|
|
|