Spaces:
Runtime error
Runtime error
Update flux1_img2img.py
Browse files- flux1_img2img.py +12 -49
flux1_img2img.py
CHANGED
|
@@ -1,66 +1,29 @@
|
|
| 1 |
-
import os
|
| 2 |
import torch
|
| 3 |
from diffusers import FluxImg2ImgPipeline
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
import sys
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
|
| 10 |
-
|
| 11 |
-
# Global pipe variable for lazy loading
|
| 12 |
-
pipe = None
|
| 13 |
-
|
| 14 |
-
def resize_image(image: Image.Image, max_dim: int = 512) -> Image.Image:
|
| 15 |
-
"""Resizes image to fit within max_dim while preserving aspect ratio"""
|
| 16 |
-
w, h = image.size
|
| 17 |
-
ratio = min(max_dim / w, max_dim / h)
|
| 18 |
-
if ratio < 1.0:
|
| 19 |
-
new_w = int(w * ratio)
|
| 20 |
-
new_h = int(h * ratio)
|
| 21 |
-
image = image.resize((new_w, new_h), Image.LANCZOS)
|
| 22 |
-
return image
|
| 23 |
-
|
| 24 |
-
def get_pipe(model_id="black-forest-labs/FLUX.1-schnell"):
|
| 25 |
-
global pipe
|
| 26 |
-
if pipe is None:
|
| 27 |
-
pipe = FluxImg2ImgPipeline.from_pretrained(
|
| 28 |
-
model_id,
|
| 29 |
-
torch_dtype=torch.float16
|
| 30 |
-
).to("cuda")
|
| 31 |
-
return pipe
|
| 32 |
|
| 33 |
@spaces.GPU
|
| 34 |
-
def process_image(image,
|
| 35 |
print("start process image process_image")
|
| 36 |
-
if image
|
| 37 |
print("empty input image returned")
|
| 38 |
return None
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
# Get model using lazy loading
|
| 44 |
-
model = get_pipe(model_id)
|
| 45 |
|
| 46 |
generators = []
|
| 47 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 48 |
generators.append(generator)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
|
| 54 |
-
print(prompt)
|
| 55 |
-
output = model(
|
| 56 |
-
prompt=prompt,
|
| 57 |
-
image=image,
|
| 58 |
-
generator=generator,
|
| 59 |
-
strength=strength,
|
| 60 |
-
guidance_scale=0,
|
| 61 |
-
num_inference_steps=num_inference_steps,
|
| 62 |
-
max_sequence_length=256
|
| 63 |
-
)
|
| 64 |
|
| 65 |
# TODO support mask
|
| 66 |
return output.images[0]
|
|
@@ -68,6 +31,6 @@ def process_image(image, mask_image, prompt="a person", model_id="black-forest-l
|
|
| 68 |
if __name__ == "__main__":
|
| 69 |
#args input-image input-mask output
|
| 70 |
image = Image.open(sys.argv[1])
|
| 71 |
-
mask
|
| 72 |
-
output = process_image(image,
|
| 73 |
output.save(sys.argv[3])
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from diffusers import FluxImg2ImgPipeline
|
| 3 |
+
|
| 4 |
from PIL import Image
|
| 5 |
import sys
|
| 6 |
import spaces
|
| 7 |
|
| 8 |
+
# I only test with FLUX.1-schnell
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
@spaces.GPU
|
| 11 |
+
def process_image(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
|
| 12 |
print("start process image process_image")
|
| 13 |
+
if image == None:
|
| 14 |
print("empty input image returned")
|
| 15 |
return None
|
| 16 |
|
| 17 |
+
pipe = FluxImg2ImgPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
| 18 |
+
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
generators = []
|
| 21 |
generator = torch.Generator("cuda").manual_seed(seed)
|
| 22 |
generators.append(generator)
|
| 23 |
+
# more parameter see https://huggingface.co/docs/diffusers/api/pipelines/flux#diffusers.FluxInpaintPipeline
|
| 24 |
+
print(prompt)
|
| 25 |
+
output = pipe(prompt=prompt, image=image,generator=generator,strength=strength
|
| 26 |
+
,guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# TODO support mask
|
| 29 |
return output.images[0]
|
|
|
|
| 31 |
if __name__ == "__main__":
|
| 32 |
#args input-image input-mask output
|
| 33 |
image = Image.open(sys.argv[1])
|
| 34 |
+
mask = Image.open(sys.argv[2])
|
| 35 |
+
output = process_image(image,mask)
|
| 36 |
output.save(sys.argv[3])
|