import streamlit as st import pandas as pd # Define datasets hospital_data = [ {'city': 'New York', 'state': 'NY', 'bed_count': 1500}, {'city': 'Los Angeles', 'state': 'CA', 'bed_count': 2000}, {'city': 'Chicago', 'state': 'IL', 'bed_count': 1200}, {'city': 'Houston', 'state': 'TX', 'bed_count': 1300}, {'city': 'Philadelphia', 'state': 'PA', 'bed_count': 1100} ] population_data = [ {'state': 'NY', 'population': 20000000, 'square_miles': 54555}, {'state': 'CA', 'population': 40000000, 'square_miles': 163696}, {'state': 'IL', 'population': 13000000, 'square_miles': 57914}, {'state': 'TX', 'population': 29000000, 'square_miles': 268596}, {'state': 'PA', 'population': 13000000, 'square_miles': 46055} ] # Convert datasets to pandas dataframes hospital_df = pd.DataFrame(hospital_data) population_df = pd.DataFrame(population_data) # Merge datasets on 'state' column merged_df = pd.merge(hospital_df, population_df, on='state') # Filter merged dataset to only include hospitals with over 1000 beds filtered_df = merged_df[merged_df['bed_count'] > 1000] # Calculate hospital density as population per hospital bed filtered_df['hospital_density'] = filtered_df['population'] / filtered_df['bed_count'] # Display merged and filtered dataset in Streamlit app st.write(filtered_df)