Update app.py
Browse files
app.py
CHANGED
|
@@ -1,32 +1,3 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import torchaudio
|
| 3 |
-
from speechbrain.inference.enhancement import WaveformEnhancement
|
| 4 |
-
import torch
|
| 5 |
|
| 6 |
-
|
| 7 |
-
enhance_model = WaveformEnhancement.from_hparams(
|
| 8 |
-
source="speechbrain/mtl-mimic-voicebank",
|
| 9 |
-
savedir="pretrained_models/mtl-mimic-voicebank",
|
| 10 |
-
)
|
| 11 |
-
|
| 12 |
-
def enhance_audio(input_audio):
|
| 13 |
-
# Load the uploaded audio file
|
| 14 |
-
waveform, sample_rate = torchaudio.load(input_audio)
|
| 15 |
-
|
| 16 |
-
# Enhance the audio
|
| 17 |
-
enhanced_waveform = enhance_model.enhance_batch(waveform)
|
| 18 |
-
|
| 19 |
-
# Save the enhanced audio to a file
|
| 20 |
-
output_path = "enhanced_audio.wav"
|
| 21 |
-
torchaudio.save(output_path, enhanced_waveform.cpu(), sample_rate)
|
| 22 |
-
|
| 23 |
-
return output_path
|
| 24 |
-
|
| 25 |
-
# Set up the Gradio interface
|
| 26 |
-
demo = gr.Interface(
|
| 27 |
-
fn=enhance_audio,
|
| 28 |
-
inputs=gr.Audio(type="filepath"), # Upload an audio file
|
| 29 |
-
outputs=gr.Audio(type="filepath"), # Download the enhanced audio
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
gr.Interface.load("models/speechbrain/mtl-mimic-voicebank").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|