import gradio as gr import os import pandas as pd from fpdf import FPDF import matplotlib.pyplot as plt import seaborn as sns import numpy as np # Add your PDFReport class and generate_data_report function here class PDFReport(FPDF): def header(self): self.set_font('Arial', 'B', 12) self.cell(0, 10, 'Data Exploration Report', border=1, ln=1, align='C') self.ln(10) def chapter_title(self, title): self.set_font('Arial', 'B', 12) self.cell(0, 10, title, border=1, ln=1, align='C') self.ln(5) def chapter_body(self, text): self.set_font('Arial', '', 10) self.multi_cell(0, 10, text) self.ln() def add_table(self, headers, data, col_widths): self.set_font('Arial', 'B', 10) for idx, header in enumerate(headers): self.cell(col_widths[idx], 10, header, border=1, align='C') self.ln() self.set_font('Arial', '', 10) for row in data: for idx, item in enumerate(row): self.cell(col_widths[idx], 10, str(item), border=1) self.ln() def generate_data_report(data,output_file='data_report.pdf', selected_columns=None): if isinstance(data, str): file_path = data file_extension = os.path.splitext(file_path)[1].lower() if file_extension == '.csv': file_format = 'CSV' elif file_extension in ['.xls', '.xlsx']: file_format = 'Excel' else: file_format = 'Unknown format' if file_format == 'CSV': data = pd.read_csv(file_path) elif file_format == 'Excel': data = pd.read_excel(file_path) else: file_format = 'DataFrame' file_path = "DataFrame" pdf = PDFReport() pdf.add_page() pdf.set_font('Arial', 'B', 12) pdf.cell(0, 10, f"File Name: {os.path.basename(file_path)}", ln=True, align='L') pdf.cell(0, 10, f"File Format: {file_format}", ln=True, align='L') pdf.cell(0, 10, f"Total Data: {data.shape[0]} rows, {data.shape[1]} columns", ln=True, align='L') pdf.ln(10) pdf.chapter_title("Columns with Missing Values") total_values = len(data) missing_values = data.isnull().sum() missing_cols = [ [col, total_values, missing_values[col]] for col in missing_values[missing_values > 0].index ] if missing_cols: pdf.add_table(["Column Name", "Total Values", "Missing Values"], missing_cols, [100, 40, 50]) else: pdf.chapter_body("No columns with missing values.") pdf.chapter_title("Columns Categorized by Data Type") dtypes_summary = data.dtypes.value_counts().reset_index() dtypes_summary.columns = ['Data Type', 'Count'] pdf.add_table(["Data Type", "Count"], dtypes_summary.values.tolist(), [100, 50]) column_types = {} for dtype in data.dtypes.unique(): column_types[str(dtype)] = data.select_dtypes(include=[dtype]).columns.tolist() for dtype, columns in column_types.items(): pdf.chapter_title(f"Columns of Type: {dtype}") col_data = [[col] for col in columns] pdf.add_table(["Column Name"], col_data, [190]) pdf.chapter_title("Constant Columns") constant_cols = [col for col in data.columns if data[col].nunique() == 1] if constant_cols: constant_cols_data = [[col] for col in constant_cols] pdf.add_table(["Constant Column Name"], constant_cols_data, [190]) data = data.drop(columns=constant_cols) pdf.chapter_body("Constant Columns After Removal: None") else: pdf.chapter_body("No constant columns found.") pdf.chapter_title("Box Plots for Numeric Columns") numeric_cols = data.select_dtypes(include=np.number).columns boxplot_dir = "box_plots" os.makedirs(boxplot_dir, exist_ok=True) boxplot_colors = ['#FF6347', '#3CB371', '#8A2BE2', '#FF4500', '#1E90FF', '#FFD700'] for idx, col in enumerate(numeric_cols): plt.figure(figsize=(6, 4)) sns.boxplot(x=data[col], color=boxplot_colors[idx % len(boxplot_colors)]) plt.title(f"Box Plot: {col}") plt.savefig(f"{boxplot_dir}/{col}.png") plt.close() pdf.add_page() pdf.chapter_title(f"Box Plot: {col}") pdf.image(f"{boxplot_dir}/{col}.png", w=170) pdf.chapter_title("Distribution Charts") dist_dir = "distribution_charts" os.makedirs(dist_dir, exist_ok=True) if selected_columns is None: selected_columns = data.columns[:6] dist_colors = ['#8B0000', '#228B22', '#DAA520', '#B0C4DE', '#9932CC', '#FF69B4'] for idx, col in enumerate(selected_columns): plt.figure(figsize=(6, 4)) if col in numeric_cols: sns.histplot(data[col], kde=True, color=dist_colors[idx % len(dist_colors)]) else: data[col].value_counts().plot(kind='bar', color=dist_colors[idx % len(dist_colors)]) plt.title(f"Distribution of {col}") plt.savefig(f"{dist_dir}/{col}.png") plt.close() pdf.add_page() pdf.chapter_title(f"Distribution: {col}") pdf.image(f"{dist_dir}/{col}.png", w=170) pdf.output(output_file) print(f"Report saved as {output_file}") def generate_report(file): file_path = file.name output_file = "data_report.pdf" generate_data_report(file_path, output_file=output_file) return output_file iface = gr.Interface( fn=generate_report, inputs=gr.File(label="Upload Dataset (.csv or .xlsx)"), outputs=gr.File(label="Download PDF Report"), title="Data Exploration Tool", css="style.css", description="Upload your dataset to generate a PDF data exploration report." ) if __name__ == "__main__": iface.launch()