Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
from fpdf import FPDF
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Add your PDFReport class and generate_data_report function here
|
10 |
+
class PDFReport(FPDF):
|
11 |
+
def header(self):
|
12 |
+
self.set_font('Arial', 'B', 12)
|
13 |
+
self.cell(0, 10, 'Data Exploration Report', border=1, ln=1, align='C')
|
14 |
+
self.ln(10)
|
15 |
+
|
16 |
+
def chapter_title(self, title):
|
17 |
+
self.set_font('Arial', 'B', 12)
|
18 |
+
self.cell(0, 10, title, border=1, ln=1, align='C')
|
19 |
+
self.ln(5)
|
20 |
+
|
21 |
+
def chapter_body(self, text):
|
22 |
+
self.set_font('Arial', '', 10)
|
23 |
+
self.multi_cell(0, 10, text)
|
24 |
+
self.ln()
|
25 |
+
|
26 |
+
def add_table(self, headers, data, col_widths):
|
27 |
+
self.set_font('Arial', 'B', 10)
|
28 |
+
for idx, header in enumerate(headers):
|
29 |
+
self.cell(col_widths[idx], 10, header, border=1, align='C')
|
30 |
+
self.ln()
|
31 |
+
self.set_font('Arial', '', 10)
|
32 |
+
for row in data:
|
33 |
+
for idx, item in enumerate(row):
|
34 |
+
self.cell(col_widths[idx], 10, str(item), border=1)
|
35 |
+
self.ln()
|
36 |
+
def generate_data_report(data,output_file='data_report.pdf', selected_columns=None):
|
37 |
+
if isinstance(data, str):
|
38 |
+
file_path = data
|
39 |
+
file_extension = os.path.splitext(file_path)[1].lower()
|
40 |
+
if file_extension == '.csv':
|
41 |
+
file_format = 'CSV'
|
42 |
+
elif file_extension in ['.xls', '.xlsx']:
|
43 |
+
file_format = 'Excel'
|
44 |
+
else:
|
45 |
+
file_format = 'Unknown format'
|
46 |
+
if file_format == 'CSV':
|
47 |
+
data = pd.read_csv(file_path)
|
48 |
+
elif file_format == 'Excel':
|
49 |
+
data = pd.read_excel(file_path)
|
50 |
+
else:
|
51 |
+
file_format = 'DataFrame'
|
52 |
+
file_path = "DataFrame"
|
53 |
+
|
54 |
+
pdf = PDFReport()
|
55 |
+
pdf.add_page()
|
56 |
+
|
57 |
+
pdf.set_font('Arial', 'B', 12)
|
58 |
+
pdf.cell(0, 10, f"File Name: {os.path.basename(file_path)}", ln=True, align='L')
|
59 |
+
pdf.cell(0, 10, f"File Format: {file_format}", ln=True, align='L')
|
60 |
+
pdf.cell(0, 10, f"Total Data: {data.shape[0]} rows, {data.shape[1]} columns", ln=True, align='L')
|
61 |
+
pdf.ln(10)
|
62 |
+
|
63 |
+
pdf.chapter_title("Columns with Missing Values")
|
64 |
+
total_values = len(data)
|
65 |
+
missing_values = data.isnull().sum()
|
66 |
+
missing_cols = [
|
67 |
+
[col, total_values, missing_values[col]]
|
68 |
+
for col in missing_values[missing_values > 0].index
|
69 |
+
]
|
70 |
+
if missing_cols:
|
71 |
+
pdf.add_table(["Column Name", "Total Values", "Missing Values"], missing_cols, [100, 40, 50])
|
72 |
+
else:
|
73 |
+
pdf.chapter_body("No columns with missing values.")
|
74 |
+
|
75 |
+
pdf.chapter_title("Columns Categorized by Data Type")
|
76 |
+
dtypes_summary = data.dtypes.value_counts().reset_index()
|
77 |
+
dtypes_summary.columns = ['Data Type', 'Count']
|
78 |
+
pdf.add_table(["Data Type", "Count"], dtypes_summary.values.tolist(), [100, 50])
|
79 |
+
|
80 |
+
column_types = {}
|
81 |
+
for dtype in data.dtypes.unique():
|
82 |
+
column_types[str(dtype)] = data.select_dtypes(include=[dtype]).columns.tolist()
|
83 |
+
|
84 |
+
for dtype, columns in column_types.items():
|
85 |
+
pdf.chapter_title(f"Columns of Type: {dtype}")
|
86 |
+
col_data = [[col] for col in columns]
|
87 |
+
pdf.add_table(["Column Name"], col_data, [190])
|
88 |
+
|
89 |
+
pdf.chapter_title("Constant Columns")
|
90 |
+
constant_cols = [col for col in data.columns if data[col].nunique() == 1]
|
91 |
+
if constant_cols:
|
92 |
+
constant_cols_data = [[col] for col in constant_cols]
|
93 |
+
pdf.add_table(["Constant Column Name"], constant_cols_data, [190])
|
94 |
+
data = data.drop(columns=constant_cols)
|
95 |
+
pdf.chapter_body("Constant Columns After Removal: None")
|
96 |
+
else:
|
97 |
+
pdf.chapter_body("No constant columns found.")
|
98 |
+
|
99 |
+
pdf.chapter_title("Box Plots for Numeric Columns")
|
100 |
+
numeric_cols = data.select_dtypes(include=np.number).columns
|
101 |
+
boxplot_dir = "box_plots"
|
102 |
+
os.makedirs(boxplot_dir, exist_ok=True)
|
103 |
+
|
104 |
+
boxplot_colors = ['#FF6347', '#3CB371', '#8A2BE2', '#FF4500', '#1E90FF', '#FFD700']
|
105 |
+
|
106 |
+
for idx, col in enumerate(numeric_cols):
|
107 |
+
plt.figure(figsize=(6, 4))
|
108 |
+
sns.boxplot(x=data[col], color=boxplot_colors[idx % len(boxplot_colors)])
|
109 |
+
plt.title(f"Box Plot: {col}")
|
110 |
+
plt.savefig(f"{boxplot_dir}/{col}.png")
|
111 |
+
plt.close()
|
112 |
+
pdf.add_page()
|
113 |
+
pdf.chapter_title(f"Box Plot: {col}")
|
114 |
+
pdf.image(f"{boxplot_dir}/{col}.png", w=170)
|
115 |
+
|
116 |
+
pdf.chapter_title("Distribution Charts")
|
117 |
+
dist_dir = "distribution_charts"
|
118 |
+
os.makedirs(dist_dir, exist_ok=True)
|
119 |
+
if selected_columns is None:
|
120 |
+
selected_columns = data.columns[:6]
|
121 |
+
|
122 |
+
dist_colors = ['#8B0000', '#228B22', '#DAA520', '#B0C4DE', '#9932CC', '#FF69B4']
|
123 |
+
|
124 |
+
for idx, col in enumerate(selected_columns):
|
125 |
+
plt.figure(figsize=(6, 4))
|
126 |
+
if col in numeric_cols:
|
127 |
+
sns.histplot(data[col], kde=True, color=dist_colors[idx % len(dist_colors)])
|
128 |
+
else:
|
129 |
+
data[col].value_counts().plot(kind='bar', color=dist_colors[idx % len(dist_colors)])
|
130 |
+
plt.title(f"Distribution of {col}")
|
131 |
+
plt.savefig(f"{dist_dir}/{col}.png")
|
132 |
+
plt.close()
|
133 |
+
pdf.add_page()
|
134 |
+
pdf.chapter_title(f"Distribution: {col}")
|
135 |
+
pdf.image(f"{dist_dir}/{col}.png", w=170)
|
136 |
+
|
137 |
+
pdf.output(output_file)
|
138 |
+
print(f"Report saved as {output_file}")
|
139 |
+
def generate_report(file):
|
140 |
+
file_path = file.name
|
141 |
+
output_file = "data_report.pdf"
|
142 |
+
generate_data_report(file_path, output_file=output_file)
|
143 |
+
return output_file
|
144 |
+
|
145 |
+
iface = gr.Interface(
|
146 |
+
fn=generate_report,
|
147 |
+
inputs=gr.File(label="Upload Dataset (.csv or .xlsx)"),
|
148 |
+
outputs=gr.File(label="Download PDF Report"),
|
149 |
+
title="Data Exploration Tool",
|
150 |
+
description="Upload your dataset to generate a PDF data exploration report."
|
151 |
+
)
|
152 |
+
|
153 |
+
if __name__ == "__main__":
|
154 |
+
iface.launch()
|