Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import pandas as pd | |
from fpdf import FPDF | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import numpy as np | |
# Add your PDFReport class and generate_data_report function here | |
class PDFReport(FPDF): | |
def header(self): | |
self.set_font('Arial', 'B', 12) | |
self.cell(0, 10, 'Data Exploration Report', border=1, ln=1, align='C') | |
self.ln(10) | |
def chapter_title(self, title): | |
self.set_font('Arial', 'B', 12) | |
self.cell(0, 10, title, border=1, ln=1, align='C') | |
self.ln(5) | |
def chapter_body(self, text): | |
self.set_font('Arial', '', 10) | |
self.multi_cell(0, 10, text) | |
self.ln() | |
def add_table(self, headers, data, col_widths): | |
self.set_font('Arial', 'B', 10) | |
for idx, header in enumerate(headers): | |
self.cell(col_widths[idx], 10, header, border=1, align='C') | |
self.ln() | |
self.set_font('Arial', '', 10) | |
for row in data: | |
for idx, item in enumerate(row): | |
self.cell(col_widths[idx], 10, str(item), border=1) | |
self.ln() | |
def generate_data_report(data,output_file='data_report.pdf', selected_columns=None): | |
if isinstance(data, str): | |
file_path = data | |
file_extension = os.path.splitext(file_path)[1].lower() | |
if file_extension == '.csv': | |
file_format = 'CSV' | |
elif file_extension in ['.xls', '.xlsx']: | |
file_format = 'Excel' | |
else: | |
file_format = 'Unknown format' | |
if file_format == 'CSV': | |
data = pd.read_csv(file_path) | |
elif file_format == 'Excel': | |
data = pd.read_excel(file_path) | |
else: | |
file_format = 'DataFrame' | |
file_path = "DataFrame" | |
pdf = PDFReport() | |
pdf.add_page() | |
pdf.set_font('Arial', 'B', 12) | |
pdf.cell(0, 10, f"File Name: {os.path.basename(file_path)}", ln=True, align='L') | |
pdf.cell(0, 10, f"File Format: {file_format}", ln=True, align='L') | |
pdf.cell(0, 10, f"Total Data: {data.shape[0]} rows, {data.shape[1]} columns", ln=True, align='L') | |
pdf.ln(10) | |
pdf.chapter_title("Columns with Missing Values") | |
total_values = len(data) | |
missing_values = data.isnull().sum() | |
missing_cols = [ | |
[col, total_values, missing_values[col]] | |
for col in missing_values[missing_values > 0].index | |
] | |
if missing_cols: | |
pdf.add_table(["Column Name", "Total Values", "Missing Values"], missing_cols, [100, 40, 50]) | |
else: | |
pdf.chapter_body("No columns with missing values.") | |
pdf.chapter_title("Columns Categorized by Data Type") | |
dtypes_summary = data.dtypes.value_counts().reset_index() | |
dtypes_summary.columns = ['Data Type', 'Count'] | |
pdf.add_table(["Data Type", "Count"], dtypes_summary.values.tolist(), [100, 50]) | |
column_types = {} | |
for dtype in data.dtypes.unique(): | |
column_types[str(dtype)] = data.select_dtypes(include=[dtype]).columns.tolist() | |
for dtype, columns in column_types.items(): | |
pdf.chapter_title(f"Columns of Type: {dtype}") | |
col_data = [[col] for col in columns] | |
pdf.add_table(["Column Name"], col_data, [190]) | |
pdf.chapter_title("Constant Columns") | |
constant_cols = [col for col in data.columns if data[col].nunique() == 1] | |
if constant_cols: | |
constant_cols_data = [[col] for col in constant_cols] | |
pdf.add_table(["Constant Column Name"], constant_cols_data, [190]) | |
data = data.drop(columns=constant_cols) | |
pdf.chapter_body("Constant Columns After Removal: None") | |
else: | |
pdf.chapter_body("No constant columns found.") | |
pdf.chapter_title("Box Plots for Numeric Columns") | |
numeric_cols = data.select_dtypes(include=np.number).columns | |
boxplot_dir = "box_plots" | |
os.makedirs(boxplot_dir, exist_ok=True) | |
boxplot_colors = ['#FF6347', '#3CB371', '#8A2BE2', '#FF4500', '#1E90FF', '#FFD700'] | |
for idx, col in enumerate(numeric_cols): | |
plt.figure(figsize=(6, 4)) | |
sns.boxplot(x=data[col], color=boxplot_colors[idx % len(boxplot_colors)]) | |
plt.title(f"Box Plot: {col}") | |
plt.savefig(f"{boxplot_dir}/{col}.png") | |
plt.close() | |
pdf.add_page() | |
pdf.chapter_title(f"Box Plot: {col}") | |
pdf.image(f"{boxplot_dir}/{col}.png", w=170) | |
pdf.chapter_title("Distribution Charts") | |
dist_dir = "distribution_charts" | |
os.makedirs(dist_dir, exist_ok=True) | |
if selected_columns is None: | |
selected_columns = data.columns[:6] | |
dist_colors = ['#8B0000', '#228B22', '#DAA520', '#B0C4DE', '#9932CC', '#FF69B4'] | |
for idx, col in enumerate(selected_columns): | |
plt.figure(figsize=(6, 4)) | |
if col in numeric_cols: | |
sns.histplot(data[col], kde=True, color=dist_colors[idx % len(dist_colors)]) | |
else: | |
data[col].value_counts().plot(kind='bar', color=dist_colors[idx % len(dist_colors)]) | |
plt.title(f"Distribution of {col}") | |
plt.savefig(f"{dist_dir}/{col}.png") | |
plt.close() | |
pdf.add_page() | |
pdf.chapter_title(f"Distribution: {col}") | |
pdf.image(f"{dist_dir}/{col}.png", w=170) | |
pdf.output(output_file) | |
print(f"Report saved as {output_file}") | |
def generate_report(file): | |
file_path = file.name | |
output_file = "data_report.pdf" | |
generate_data_report(file_path, output_file=output_file) | |
return output_file | |
iface = gr.Interface( | |
fn=generate_report, | |
inputs=gr.File(label="Upload Dataset (.csv or .xlsx)"), | |
outputs=gr.File(label="Download PDF Report"), | |
title="Data Exploration Tool", | |
css="style.css", | |
description="Upload your dataset to generate a PDF data exploration report." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |