|
import os |
|
os.system("pip install gradio==2.9b23") |
|
import numpy as np |
|
import math |
|
import matplotlib.pyplot as plt |
|
import onnxruntime as rt |
|
import cv2 |
|
import json |
|
import gradio as gr |
|
from huggingface_hub import hf_hub_download |
|
import onnxruntime as rt |
|
|
|
modele = hf_hub_download(repo_id="onnx/EfficientNet-Lite4", filename="efficientnet-lite4-11.onnx") |
|
labels = json.load(open("labels_map.txt", "r")) |
|
|
|
|
|
def pre_process_edgetpu(img, dims): |
|
output_height, output_width, _ = dims |
|
img = resize_with_aspectratio(img, output_height, output_width, inter_pol=cv2.INTER_LINEAR) |
|
img = center_crop(img, output_height, output_width) |
|
img = np.asarray(img, dtype='float32') |
|
|
|
img -= [127.0, 127.0, 127.0] |
|
img /= [128.0, 128.0, 128.0] |
|
return img |
|
|
|
def resize_with_aspectratio(img, out_height, out_width, scale=87.5, inter_pol=cv2.INTER_LINEAR): |
|
height, width, _ = img.shape |
|
new_height = int(100. * out_height / scale) |
|
new_width = int(100. * out_width / scale) |
|
if height > width: |
|
w = new_width |
|
h = int(new_height * height / width) |
|
else: |
|
h = new_height |
|
w = int(new_width * width / height) |
|
img = cv2.resize(img, (w, h), interpolation=inter_pol) |
|
return img |
|
|
|
def center_crop(img, out_height, out_width): |
|
height, width, _ = img.shape |
|
left = int((width - out_width) / 2) |
|
right = int((width + out_width) / 2) |
|
top = int((height - out_height) / 2) |
|
bottom = int((height + out_height) / 2) |
|
img = img[top:bottom, left:right] |
|
return img |
|
|
|
|
|
sess = rt.InferenceSession(modele) |
|
|
|
def inference(img): |
|
img = cv2.imread(img) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
img = pre_process_edgetpu(img, (224, 224, 3)) |
|
|
|
img_batch = np.expand_dims(img, axis=0) |
|
|
|
results = sess.run(["Softmax:0"], {"images:0": img_batch})[0] |
|
result = reversed(results[0].argsort()[-5:]) |
|
resultdic = {} |
|
for r in result: |
|
resultdic[labels[str(r)]] = float(results[0][r]) |
|
return resultdic |
|
|
|
|
|
title="Определитель животного" |
|
description="Перетащите фото" |
|
examples=[['cat1.jpg'],['dog.jpg'],['lis.jpg']] |
|
|
|
|
|
gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,examples=examples).launch() |
|
|