Spaces:
Paused
Paused
경량화 모델 및 기타 file commit
Browse files- .gitattributes +2 -0
- .ipynb_checkpoints/app-checkpoint.py +11 -5
- .ipynb_checkpoints/eval_and_inference-checkpoint.ipynb +279 -0
- .ipynb_checkpoints/eval_and_inference_lite_v1-checkpoint.ipynb +189 -0
- .ipynb_checkpoints/text_label-checkpoint.json +528 -0
- .ipynb_checkpoints/text_mapping_example-checkpoint.ipynb +90 -0
- app.py +10 -4
- eval_and_inference.ipynb +279 -0
- eval_and_inference_lite_v1.ipynb +189 -0
- model/gaepago-20-lite/.ipynb_checkpoints/config-checkpoint.json +131 -0
- model/gaepago-20-lite/config.json +131 -0
- model/gaepago-20-lite/model_quant_int8.pt +3 -0
- model/gaepago-20-lite/preprocessor_config.json +9 -0
- requirements.txt +18 -0
- text_label.json +528 -0
- text_mapping_example.ipynb +90 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
model/gaepago-20-lite filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
model/gaepago-20-lite/model_quant_int8.pt filter=lfs diff=lfs merge=lfs -text
|
.ipynb_checkpoints/app-checkpoint.py
CHANGED
|
@@ -4,7 +4,7 @@
|
|
| 4 |
from transformers import AutoModelForAudioClassification
|
| 5 |
from transformers import AutoFeatureExtractor
|
| 6 |
from transformers import pipeline
|
| 7 |
-
from datasets import Dataset
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
| 10 |
|
|
@@ -13,7 +13,10 @@ MODEL_NAME = "Gae8J/gaepago-20"
|
|
| 13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
| 14 |
|
| 15 |
# Import Model & feature extractor
|
| 16 |
-
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
| 17 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 18 |
|
| 19 |
# 모델 cpu로 변경하여 진행
|
|
@@ -27,9 +30,12 @@ def gaepago_fn(tmp_audio_dir):
|
|
| 27 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
| 28 |
,return_tensors="pt")
|
| 29 |
with torch.no_grad():
|
| 30 |
-
logits = model(**inputs).logits
|
|
|
|
|
|
|
|
|
|
| 31 |
predicted_class_ids = torch.argmax(logits).item()
|
| 32 |
-
predicted_label =
|
| 33 |
|
| 34 |
return predicted_label
|
| 35 |
|
|
@@ -47,4 +53,4 @@ with main_api:
|
|
| 47 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
| 48 |
# examples = gr.Examples(examples=example_list,
|
| 49 |
# inputs=[audio])
|
| 50 |
-
main_api.launch()
|
|
|
|
| 4 |
from transformers import AutoModelForAudioClassification
|
| 5 |
from transformers import AutoFeatureExtractor
|
| 6 |
from transformers import pipeline
|
| 7 |
+
from datasets import Dataset, Audio
|
| 8 |
import gradio as gr
|
| 9 |
import torch
|
| 10 |
|
|
|
|
| 13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
| 14 |
|
| 15 |
# Import Model & feature extractor
|
| 16 |
+
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
| 17 |
+
from transformers import AutoConfig
|
| 18 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
| 19 |
+
model = torch.jit.load(f"./model/gaepago-20-lite/model_quant_int8.pt")
|
| 20 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 21 |
|
| 22 |
# 모델 cpu로 변경하여 진행
|
|
|
|
| 30 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
| 31 |
,return_tensors="pt")
|
| 32 |
with torch.no_grad():
|
| 33 |
+
# logits = model(**inputs).logits
|
| 34 |
+
logits = model(**inputs)["logits"]
|
| 35 |
+
# predicted_class_ids = torch.argmax(logits).item()
|
| 36 |
+
# predicted_label = model.config.id2label[predicted_class_ids]
|
| 37 |
predicted_class_ids = torch.argmax(logits).item()
|
| 38 |
+
predicted_label = config.id2label[predicted_class_ids]
|
| 39 |
|
| 40 |
return predicted_label
|
| 41 |
|
|
|
|
| 53 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
| 54 |
# examples = gr.Examples(examples=example_list,
|
| 55 |
# inputs=[audio])
|
| 56 |
+
main_api.launch(share=True)
|
.ipynb_checkpoints/eval_and_inference-checkpoint.ipynb
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# example"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"MODEL_NAME = \"gaepago-20\"\n",
|
| 19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "markdown",
|
| 24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"source": [
|
| 27 |
+
"## load dataset (test data)"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 2,
|
| 33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [
|
| 36 |
+
{
|
| 37 |
+
"name": "stderr",
|
| 38 |
+
"output_type": "stream",
|
| 39 |
+
"text": [
|
| 40 |
+
"Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"data": {
|
| 45 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 46 |
+
"model_id": "f078fd108d2044b48a961bee6ed49747",
|
| 47 |
+
"version_major": 2,
|
| 48 |
+
"version_minor": 0
|
| 49 |
+
},
|
| 50 |
+
"text/plain": [
|
| 51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"output_type": "display_data"
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"source": [
|
| 59 |
+
"from datasets import load_dataset, Audio\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
| 62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 63 |
+
"test_data = dataset['test']\n",
|
| 64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "markdown",
|
| 69 |
+
"id": "d0c16b3d-32dd-4e61-86bd-e21232840e98",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"source": [
|
| 72 |
+
"## run"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 5,
|
| 78 |
+
"id": "d504778d-4ba3-43d3-b22b-76ce838a5edf",
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"from transformers import AutoModelForAudioClassification\n",
|
| 83 |
+
"from transformers import AutoFeatureExtractor\n",
|
| 84 |
+
"import torch\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
| 87 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"preds = []\n",
|
| 90 |
+
"gts = []\n",
|
| 91 |
+
"for i in range(len(test_data)):\n",
|
| 92 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 93 |
+
" with torch.no_grad():\n",
|
| 94 |
+
" logits = model(**inputs).logits\n",
|
| 95 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 96 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
| 97 |
+
" preds.append(predicted_label)\n",
|
| 98 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "markdown",
|
| 103 |
+
"id": "f200bec5-c2d9-4549-8bb8-1400c484f499",
|
| 104 |
+
"metadata": {},
|
| 105 |
+
"source": [
|
| 106 |
+
"## performance"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "code",
|
| 111 |
+
"execution_count": 6,
|
| 112 |
+
"id": "be97683d-da60-4d23-abc9-0be9b86cd636",
|
| 113 |
+
"metadata": {},
|
| 114 |
+
"outputs": [
|
| 115 |
+
{
|
| 116 |
+
"name": "stdout",
|
| 117 |
+
"output_type": "stream",
|
| 118 |
+
"text": [
|
| 119 |
+
" precision recall f1-score support\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" bark 0.56 0.62 0.59 8\n",
|
| 122 |
+
" growling 1.00 0.83 0.91 6\n",
|
| 123 |
+
" howl 0.75 0.86 0.80 7\n",
|
| 124 |
+
" panting 1.00 0.80 0.89 10\n",
|
| 125 |
+
" whimper 0.38 0.43 0.40 7\n",
|
| 126 |
+
"\n",
|
| 127 |
+
" accuracy 0.71 38\n",
|
| 128 |
+
" macro avg 0.74 0.71 0.72 38\n",
|
| 129 |
+
"weighted avg 0.75 0.71 0.72 38\n",
|
| 130 |
+
"\n"
|
| 131 |
+
]
|
| 132 |
+
}
|
| 133 |
+
],
|
| 134 |
+
"source": [
|
| 135 |
+
"from sklearn.metrics import classification_report\n",
|
| 136 |
+
"test_performance = classification_report(gts, preds)\n",
|
| 137 |
+
"print(test_performance)"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "markdown",
|
| 142 |
+
"id": "ea3ee48d-19c7-4f9d-9c2c-4b03d4748acb",
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"source": [
|
| 145 |
+
"## load dataset (validation data)"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": 7,
|
| 151 |
+
"id": "33e5051e-75a2-4523-905c-fe1dbc81eda2",
|
| 152 |
+
"metadata": {},
|
| 153 |
+
"outputs": [
|
| 154 |
+
{
|
| 155 |
+
"name": "stderr",
|
| 156 |
+
"output_type": "stream",
|
| 157 |
+
"text": [
|
| 158 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"data": {
|
| 163 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 164 |
+
"model_id": "cf5cfe439c174b8284b4668419af6dca",
|
| 165 |
+
"version_major": 2,
|
| 166 |
+
"version_minor": 0
|
| 167 |
+
},
|
| 168 |
+
"text/plain": [
|
| 169 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"output_type": "display_data"
|
| 174 |
+
}
|
| 175 |
+
],
|
| 176 |
+
"source": [
|
| 177 |
+
"from datasets import load_dataset, Audio\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
| 180 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 181 |
+
"test_data = dataset['validation']\n",
|
| 182 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "markdown",
|
| 187 |
+
"id": "36bee3b3-e66f-46dc-8030-cef3cb62ff97",
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"source": [
|
| 190 |
+
"## run"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": 9,
|
| 196 |
+
"id": "914a471c-5d76-482b-a4f3-3c5eeebdd697",
|
| 197 |
+
"metadata": {},
|
| 198 |
+
"outputs": [],
|
| 199 |
+
"source": [
|
| 200 |
+
"from transformers import AutoModelForAudioClassification\n",
|
| 201 |
+
"import torch\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
| 204 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"preds = []\n",
|
| 207 |
+
"gts = []\n",
|
| 208 |
+
"for i in range(len(test_data)):\n",
|
| 209 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 210 |
+
" with torch.no_grad():\n",
|
| 211 |
+
" logits = model(**inputs).logits\n",
|
| 212 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 213 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
| 214 |
+
" preds.append(predicted_label)\n",
|
| 215 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "markdown",
|
| 220 |
+
"id": "4f1d5bab-4f88-4628-918e-d14b29c2143b",
|
| 221 |
+
"metadata": {},
|
| 222 |
+
"source": [
|
| 223 |
+
"## performance"
|
| 224 |
+
]
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"cell_type": "code",
|
| 228 |
+
"execution_count": 10,
|
| 229 |
+
"id": "26e0c704-b5b6-4bf0-8b58-1e3615b76cb7",
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"outputs": [
|
| 232 |
+
{
|
| 233 |
+
"name": "stdout",
|
| 234 |
+
"output_type": "stream",
|
| 235 |
+
"text": [
|
| 236 |
+
" precision recall f1-score support\n",
|
| 237 |
+
"\n",
|
| 238 |
+
" bark 0.75 0.67 0.71 9\n",
|
| 239 |
+
" growling 1.00 0.71 0.83 7\n",
|
| 240 |
+
" howl 0.86 0.86 0.86 7\n",
|
| 241 |
+
" panting 1.00 0.70 0.82 10\n",
|
| 242 |
+
" whimper 0.54 1.00 0.70 7\n",
|
| 243 |
+
"\n",
|
| 244 |
+
" accuracy 0.78 40\n",
|
| 245 |
+
" macro avg 0.83 0.79 0.78 40\n",
|
| 246 |
+
"weighted avg 0.84 0.78 0.78 40\n",
|
| 247 |
+
"\n"
|
| 248 |
+
]
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
"source": [
|
| 252 |
+
"from sklearn.metrics import classification_report\n",
|
| 253 |
+
"valid_performance = classification_report(gts, preds)\n",
|
| 254 |
+
"print(valid_performance)"
|
| 255 |
+
]
|
| 256 |
+
}
|
| 257 |
+
],
|
| 258 |
+
"metadata": {
|
| 259 |
+
"kernelspec": {
|
| 260 |
+
"display_name": "g3p8",
|
| 261 |
+
"language": "python",
|
| 262 |
+
"name": "g3p8"
|
| 263 |
+
},
|
| 264 |
+
"language_info": {
|
| 265 |
+
"codemirror_mode": {
|
| 266 |
+
"name": "ipython",
|
| 267 |
+
"version": 3
|
| 268 |
+
},
|
| 269 |
+
"file_extension": ".py",
|
| 270 |
+
"mimetype": "text/x-python",
|
| 271 |
+
"name": "python",
|
| 272 |
+
"nbconvert_exporter": "python",
|
| 273 |
+
"pygments_lexer": "ipython3",
|
| 274 |
+
"version": "3.7.9"
|
| 275 |
+
}
|
| 276 |
+
},
|
| 277 |
+
"nbformat": 4,
|
| 278 |
+
"nbformat_minor": 5
|
| 279 |
+
}
|
.ipynb_checkpoints/eval_and_inference_lite_v1-checkpoint.ipynb
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# example"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"MODEL_NAME = \"gaepago-20-lite\"\n",
|
| 19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "markdown",
|
| 24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"source": [
|
| 27 |
+
"## load dataset (test data)"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 2,
|
| 33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [
|
| 36 |
+
{
|
| 37 |
+
"name": "stderr",
|
| 38 |
+
"output_type": "stream",
|
| 39 |
+
"text": [
|
| 40 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"data": {
|
| 45 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 46 |
+
"model_id": "4438f0b33464423b92fecc698c1935e5",
|
| 47 |
+
"version_major": 2,
|
| 48 |
+
"version_minor": 0
|
| 49 |
+
},
|
| 50 |
+
"text/plain": [
|
| 51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"output_type": "display_data"
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"source": [
|
| 59 |
+
"from datasets import load_dataset, Audio\n",
|
| 60 |
+
"from transformers import AutoFeatureExtractor\n",
|
| 61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
| 62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 63 |
+
"test_data = dataset['test']\n",
|
| 64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate\n",
|
| 65 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": 7,
|
| 71 |
+
"id": "779c547a-7e27-4481-8a66-fd9900e41964",
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"from transformers import AutoConfig\n",
|
| 76 |
+
"config = AutoConfig.from_pretrained(MODEL_NAME)"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": 3,
|
| 82 |
+
"id": "03659af7-3d90-4431-a4ea-a8d99e93602f",
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"import torch"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": 4,
|
| 92 |
+
"id": "0f58cfcf-ba2d-45e4-b4e9-87df88e9dbad",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"loaded_quantized_model = torch.jit.load(\"gaepago-20-lite/model_quant_int8.pt\")"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "markdown",
|
| 101 |
+
"id": "52212656-a3e9-4bd2-ac2d-427acb5795c6",
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"source": [
|
| 104 |
+
"## 모델결과"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": 9,
|
| 110 |
+
"id": "3d4f5365-d6f1-4163-9c47-ce8c89e13884",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"outputs": [],
|
| 113 |
+
"source": [
|
| 114 |
+
"preds = []\n",
|
| 115 |
+
"gts = []\n",
|
| 116 |
+
"# quant_logits_list = []\n",
|
| 117 |
+
"for i in range(len(test_data)):\n",
|
| 118 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 119 |
+
" with torch.no_grad():\n",
|
| 120 |
+
" logits = loaded_quantized_model(**inputs)['logits']\n",
|
| 121 |
+
"# quant_logits_list.append(logits)\n",
|
| 122 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 123 |
+
" predicted_label = config.id2label[predicted_class_ids]\n",
|
| 124 |
+
" preds.append(predicted_label)\n",
|
| 125 |
+
" gts.append(config.id2label[test_data[i]['label']])"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": 10,
|
| 131 |
+
"id": "93b3c424-bab6-4774-915e-9e9f534f762d",
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [
|
| 134 |
+
{
|
| 135 |
+
"name": "stdout",
|
| 136 |
+
"output_type": "stream",
|
| 137 |
+
"text": [
|
| 138 |
+
" precision recall f1-score support\n",
|
| 139 |
+
"\n",
|
| 140 |
+
" bark 0.5556 0.6250 0.5882 8\n",
|
| 141 |
+
" growling 1.0000 0.8333 0.9091 6\n",
|
| 142 |
+
" howl 0.7500 0.8571 0.8000 7\n",
|
| 143 |
+
" panting 1.0000 0.8000 0.8889 10\n",
|
| 144 |
+
" whimper 0.3750 0.4286 0.4000 7\n",
|
| 145 |
+
"\n",
|
| 146 |
+
" accuracy 0.7105 38\n",
|
| 147 |
+
" macro avg 0.7361 0.7088 0.7172 38\n",
|
| 148 |
+
"weighted avg 0.7452 0.7105 0.7224 38\n",
|
| 149 |
+
"\n"
|
| 150 |
+
]
|
| 151 |
+
}
|
| 152 |
+
],
|
| 153 |
+
"source": [
|
| 154 |
+
"from sklearn.metrics import classification_report\n",
|
| 155 |
+
"test_performance = classification_report(gts, preds,digits=4)\n",
|
| 156 |
+
"print(test_performance)"
|
| 157 |
+
]
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"cell_type": "code",
|
| 161 |
+
"execution_count": null,
|
| 162 |
+
"id": "99a3ea38-54c8-4aed-9bbf-12f98bf09dc5",
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": []
|
| 166 |
+
}
|
| 167 |
+
],
|
| 168 |
+
"metadata": {
|
| 169 |
+
"kernelspec": {
|
| 170 |
+
"display_name": "g3p8",
|
| 171 |
+
"language": "python",
|
| 172 |
+
"name": "g3p8"
|
| 173 |
+
},
|
| 174 |
+
"language_info": {
|
| 175 |
+
"codemirror_mode": {
|
| 176 |
+
"name": "ipython",
|
| 177 |
+
"version": 3
|
| 178 |
+
},
|
| 179 |
+
"file_extension": ".py",
|
| 180 |
+
"mimetype": "text/x-python",
|
| 181 |
+
"name": "python",
|
| 182 |
+
"nbconvert_exporter": "python",
|
| 183 |
+
"pygments_lexer": "ipython3",
|
| 184 |
+
"version": "3.7.9"
|
| 185 |
+
}
|
| 186 |
+
},
|
| 187 |
+
"nbformat": 4,
|
| 188 |
+
"nbformat_minor": 5
|
| 189 |
+
}
|
.ipynb_checkpoints/text_label-checkpoint.json
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bark": [
|
| 3 |
+
[
|
| 4 |
+
"너무 신나서 어쩌지?",
|
| 5 |
+
"긍정"
|
| 6 |
+
],
|
| 7 |
+
[
|
| 8 |
+
"집사, 놀아줘!",
|
| 9 |
+
"긍정"
|
| 10 |
+
],
|
| 11 |
+
[
|
| 12 |
+
"지금 너무 신나!",
|
| 13 |
+
"긍정"
|
| 14 |
+
],
|
| 15 |
+
[
|
| 16 |
+
"누가 왔나 봐!",
|
| 17 |
+
"긍정"
|
| 18 |
+
],
|
| 19 |
+
[
|
| 20 |
+
"놀아줘!! 놀아달란말이야!!",
|
| 21 |
+
"긍정"
|
| 22 |
+
],
|
| 23 |
+
[
|
| 24 |
+
"안녕 🐶",
|
| 25 |
+
"긍정"
|
| 26 |
+
],
|
| 27 |
+
[
|
| 28 |
+
"난 너를 좋아하는 걸, 그런데 너는 나를 좋아해?",
|
| 29 |
+
"긍정"
|
| 30 |
+
],
|
| 31 |
+
[
|
| 32 |
+
"주목해줘! 놀자!",
|
| 33 |
+
"긍정"
|
| 34 |
+
],
|
| 35 |
+
[
|
| 36 |
+
"놀이 시간이야, 같이 놀자!",
|
| 37 |
+
"긍정"
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
"다가오지마!",
|
| 41 |
+
"부정"
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
"뭔가 이상한 소리 들려!",
|
| 45 |
+
"부정"
|
| 46 |
+
],
|
| 47 |
+
[
|
| 48 |
+
"경계해, 경계해!",
|
| 49 |
+
"부정"
|
| 50 |
+
],
|
| 51 |
+
[
|
| 52 |
+
"아니야, 아니야!",
|
| 53 |
+
"부정"
|
| 54 |
+
],
|
| 55 |
+
[
|
| 56 |
+
"건들지마!!!!",
|
| 57 |
+
"부정"
|
| 58 |
+
],
|
| 59 |
+
[
|
| 60 |
+
"뭔가 불안해, 도와줘!",
|
| 61 |
+
"부정"
|
| 62 |
+
],
|
| 63 |
+
[
|
| 64 |
+
"주인~ 뭐해~?",
|
| 65 |
+
"중립"
|
| 66 |
+
],
|
| 67 |
+
[
|
| 68 |
+
"밖에 뭐가 있는 거 같아!",
|
| 69 |
+
"중립"
|
| 70 |
+
],
|
| 71 |
+
[
|
| 72 |
+
"이리 와봐!",
|
| 73 |
+
"중립"
|
| 74 |
+
],
|
| 75 |
+
[
|
| 76 |
+
"날 보고있어?",
|
| 77 |
+
"중립"
|
| 78 |
+
],
|
| 79 |
+
[
|
| 80 |
+
"밖에 뭐 있어?",
|
| 81 |
+
"중립"
|
| 82 |
+
],
|
| 83 |
+
[
|
| 84 |
+
"이거 내꺼야!",
|
| 85 |
+
"중립"
|
| 86 |
+
],
|
| 87 |
+
[
|
| 88 |
+
"물 마실래, 마실 것 좀 줘.",
|
| 89 |
+
"중립"
|
| 90 |
+
],
|
| 91 |
+
[
|
| 92 |
+
"목이 말라, 물 좀 줄래?",
|
| 93 |
+
"중립"
|
| 94 |
+
]
|
| 95 |
+
],
|
| 96 |
+
"growling": [
|
| 97 |
+
[
|
| 98 |
+
"나 좀 내버려 둬!",
|
| 99 |
+
"부정"
|
| 100 |
+
],
|
| 101 |
+
[
|
| 102 |
+
"더 이상 다가오지마!",
|
| 103 |
+
"부정"
|
| 104 |
+
],
|
| 105 |
+
[
|
| 106 |
+
"너무 까다로워!",
|
| 107 |
+
"부정"
|
| 108 |
+
],
|
| 109 |
+
[
|
| 110 |
+
"내가 경계하고 있어!",
|
| 111 |
+
"부정"
|
| 112 |
+
],
|
| 113 |
+
[
|
| 114 |
+
"빨리 이리 와!",
|
| 115 |
+
"부정"
|
| 116 |
+
],
|
| 117 |
+
[
|
| 118 |
+
"나 너무 화나!",
|
| 119 |
+
"부정"
|
| 120 |
+
],
|
| 121 |
+
[
|
| 122 |
+
"나 싸울 준비됐어!",
|
| 123 |
+
"부정"
|
| 124 |
+
],
|
| 125 |
+
[
|
| 126 |
+
"그만 좀 해!",
|
| 127 |
+
"부정"
|
| 128 |
+
],
|
| 129 |
+
[
|
| 130 |
+
"내게 장난치지마!",
|
| 131 |
+
"부정"
|
| 132 |
+
],
|
| 133 |
+
[
|
| 134 |
+
"나 지금 너무 짜증나!",
|
| 135 |
+
"부정"
|
| 136 |
+
],
|
| 137 |
+
[
|
| 138 |
+
"나 지금 안 좋아!",
|
| 139 |
+
"부정"
|
| 140 |
+
],
|
| 141 |
+
[
|
| 142 |
+
"다가오지마!",
|
| 143 |
+
"부정"
|
| 144 |
+
],
|
| 145 |
+
[
|
| 146 |
+
"너에게 화난 거야!",
|
| 147 |
+
"부정"
|
| 148 |
+
],
|
| 149 |
+
[
|
| 150 |
+
"좀 멀리 가!",
|
| 151 |
+
"부정"
|
| 152 |
+
],
|
| 153 |
+
[
|
| 154 |
+
"나 싸우려고 준비됐어!",
|
| 155 |
+
"부정"
|
| 156 |
+
],
|
| 157 |
+
[
|
| 158 |
+
"한번 더 건드리면 물어버릴거야!!!",
|
| 159 |
+
"부정"
|
| 160 |
+
],
|
| 161 |
+
[
|
| 162 |
+
"나한테 이렇게 위협적으로 다가오지마!",
|
| 163 |
+
"부정"
|
| 164 |
+
],
|
| 165 |
+
[
|
| 166 |
+
"나의 영역을 침범하면 안돼! 이해해줘!",
|
| 167 |
+
"부정"
|
| 168 |
+
],
|
| 169 |
+
[
|
| 170 |
+
"그만 좀 귀찮게 해! 내가 분명히 경고했잖아!",
|
| 171 |
+
"부정"
|
| 172 |
+
],
|
| 173 |
+
[
|
| 174 |
+
"불편해, 물러서줘.",
|
| 175 |
+
"부정"
|
| 176 |
+
],
|
| 177 |
+
[
|
| 178 |
+
"경고하는 거야, 가까이 오지 마.",
|
| 179 |
+
"부정"
|
| 180 |
+
],
|
| 181 |
+
[
|
| 182 |
+
"좀 너무 가까워, 거리 좀 둬.",
|
| 183 |
+
"부정"
|
| 184 |
+
],
|
| 185 |
+
[
|
| 186 |
+
"나를 방해하지 마, 신경 써줘.",
|
| 187 |
+
"부정"
|
| 188 |
+
],
|
| 189 |
+
[
|
| 190 |
+
"내가 불편해, 거리 좀 두고 있어.",
|
| 191 |
+
"부정"
|
| 192 |
+
],
|
| 193 |
+
[
|
| 194 |
+
"가까이 오지 마.",
|
| 195 |
+
"부정"
|
| 196 |
+
],
|
| 197 |
+
[
|
| 198 |
+
"나를 방해하지 마, 존중해줘. Respect Me!!",
|
| 199 |
+
"부정"
|
| 200 |
+
]
|
| 201 |
+
],
|
| 202 |
+
"howl": [
|
| 203 |
+
[
|
| 204 |
+
"나 여기있어, 봐줘!",
|
| 205 |
+
"중립"
|
| 206 |
+
],
|
| 207 |
+
[
|
| 208 |
+
"너 어디 갔어?!",
|
| 209 |
+
"중립"
|
| 210 |
+
],
|
| 211 |
+
[
|
| 212 |
+
"나 너무 외로워!",
|
| 213 |
+
"중립"
|
| 214 |
+
],
|
| 215 |
+
[
|
| 216 |
+
"이리 와봐, 나 있는 곳으로!",
|
| 217 |
+
"중립"
|
| 218 |
+
],
|
| 219 |
+
[
|
| 220 |
+
"너 없으면 너무 심심해!",
|
| 221 |
+
"중립"
|
| 222 |
+
],
|
| 223 |
+
[
|
| 224 |
+
"나도 같이 가고 싶어!",
|
| 225 |
+
"중립"
|
| 226 |
+
],
|
| 227 |
+
[
|
| 228 |
+
"나 심심해",
|
| 229 |
+
"중립"
|
| 230 |
+
],
|
| 231 |
+
[
|
| 232 |
+
"어디야? 나 찾아봐!",
|
| 233 |
+
"중립"
|
| 234 |
+
],
|
| 235 |
+
[
|
| 236 |
+
"언제 오려고 그래?",
|
| 237 |
+
"중립"
|
| 238 |
+
],
|
| 239 |
+
[
|
| 240 |
+
"나는 여기 있는데!",
|
| 241 |
+
"중립"
|
| 242 |
+
],
|
| 243 |
+
[
|
| 244 |
+
"빨리 돌아와줘!",
|
| 245 |
+
"중립"
|
| 246 |
+
],
|
| 247 |
+
[
|
| 248 |
+
"나 혼자 남겨두지 마!",
|
| 249 |
+
"중립"
|
| 250 |
+
],
|
| 251 |
+
[
|
| 252 |
+
"나 여기있어!! 나좀 봐줘!!!",
|
| 253 |
+
"중립"
|
| 254 |
+
],
|
| 255 |
+
[
|
| 256 |
+
"나 잘 보고 있어? 나 괜찮아?",
|
| 257 |
+
"중립"
|
| 258 |
+
],
|
| 259 |
+
[
|
| 260 |
+
"주인, 나 좀 안아줄 수 있을까?",
|
| 261 |
+
"중립"
|
| 262 |
+
],
|
| 263 |
+
[
|
| 264 |
+
"외로워, 보고 싶어.",
|
| 265 |
+
"중립"
|
| 266 |
+
],
|
| 267 |
+
[
|
| 268 |
+
"다른 강아지와 '합창'하고 싶어.",
|
| 269 |
+
"중립"
|
| 270 |
+
],
|
| 271 |
+
[
|
| 272 |
+
"너를 보고싶어, 언제 와?",
|
| 273 |
+
"중립"
|
| 274 |
+
],
|
| 275 |
+
[
|
| 276 |
+
"무언가 알려고 하는 중이야.",
|
| 277 |
+
"중립"
|
| 278 |
+
],
|
| 279 |
+
[
|
| 280 |
+
"다른 강아지들이랑 노래하고 싶어.",
|
| 281 |
+
"긍정"
|
| 282 |
+
]
|
| 283 |
+
],
|
| 284 |
+
"panting": [
|
| 285 |
+
[
|
| 286 |
+
"더워~ 에어컨 켜줘.",
|
| 287 |
+
"부정"
|
| 288 |
+
],
|
| 289 |
+
[
|
| 290 |
+
"운동 후 휴식 중이야.",
|
| 291 |
+
"중립"
|
| 292 |
+
],
|
| 293 |
+
[
|
| 294 |
+
"숨이 차, 좀 도와줘.",
|
| 295 |
+
"부정"
|
| 296 |
+
],
|
| 297 |
+
[
|
| 298 |
+
"휴식이 필요해, 좀 쉬자.",
|
| 299 |
+
"부정"
|
| 300 |
+
],
|
| 301 |
+
[
|
| 302 |
+
"너무 더워, 물 좀 줄래?",
|
| 303 |
+
"부정"
|
| 304 |
+
],
|
| 305 |
+
[
|
| 306 |
+
"너무 더워, 바람 좀 쐬자.",
|
| 307 |
+
"부정"
|
| 308 |
+
],
|
| 309 |
+
[
|
| 310 |
+
"힘들게 운동했어, 휴식 좀!",
|
| 311 |
+
"부정"
|
| 312 |
+
],
|
| 313 |
+
[
|
| 314 |
+
"숨이 차, 쉬는 시간이 필요해.",
|
| 315 |
+
"부정"
|
| 316 |
+
],
|
| 317 |
+
[
|
| 318 |
+
"휴식이 필요해, 조용히 좀...",
|
| 319 |
+
"부정"
|
| 320 |
+
],
|
| 321 |
+
[
|
| 322 |
+
"물 좀 마시고 싶어, 줄래?",
|
| 323 |
+
"중립"
|
| 324 |
+
],
|
| 325 |
+
[
|
| 326 |
+
"많이 뛰어서 힘들어, 휴식이 필요해.",
|
| 327 |
+
"부정"
|
| 328 |
+
],
|
| 329 |
+
[
|
| 330 |
+
"휴식이 필요해, 좀 더 쉬자.",
|
| 331 |
+
"중립"
|
| 332 |
+
],
|
| 333 |
+
[
|
| 334 |
+
"너무 더워서 물 좀 마시고 싶어.",
|
| 335 |
+
"중립"
|
| 336 |
+
],
|
| 337 |
+
[
|
| 338 |
+
"좀 더운 �� 같아, 바람 좀 쐬고 싶어.",
|
| 339 |
+
"중립"
|
| 340 |
+
],
|
| 341 |
+
[
|
| 342 |
+
"지금 좀 쉴 시간이 필요해, 잠시만 기다려.",
|
| 343 |
+
"중립"
|
| 344 |
+
],
|
| 345 |
+
[
|
| 346 |
+
"지금 진정할 시간이 필요해!!!",
|
| 347 |
+
"중립"
|
| 348 |
+
],
|
| 349 |
+
[
|
| 350 |
+
"나 지금 너무 신나",
|
| 351 |
+
"긍정"
|
| 352 |
+
],
|
| 353 |
+
[
|
| 354 |
+
"너랑 놀면 더 재밌을 것 같아",
|
| 355 |
+
"긍정"
|
| 356 |
+
],
|
| 357 |
+
[
|
| 358 |
+
"나랑 놀지 않을래?",
|
| 359 |
+
"긍정"
|
| 360 |
+
],
|
| 361 |
+
[
|
| 362 |
+
"밖에 나가면 재미난 일이 있을 것 같아!",
|
| 363 |
+
"긍정"
|
| 364 |
+
],
|
| 365 |
+
[
|
| 366 |
+
"오늘은 무슨 일이 있을까? 좋은 일이 생길 것 같아!",
|
| 367 |
+
"긍정"
|
| 368 |
+
],
|
| 369 |
+
[
|
| 370 |
+
"세상 모든 것들이 반가워~",
|
| 371 |
+
"긍정"
|
| 372 |
+
],
|
| 373 |
+
[
|
| 374 |
+
"너랑 친해지고 싶어~",
|
| 375 |
+
"긍정"
|
| 376 |
+
],
|
| 377 |
+
[
|
| 378 |
+
"오늘 기분 아주 나이스~",
|
| 379 |
+
"긍정"
|
| 380 |
+
],
|
| 381 |
+
[
|
| 382 |
+
"세상에서 제일 좋아!!",
|
| 383 |
+
"긍정"
|
| 384 |
+
],
|
| 385 |
+
[
|
| 386 |
+
"나 지금 기분이가 좋아~",
|
| 387 |
+
"긍정"
|
| 388 |
+
],
|
| 389 |
+
[
|
| 390 |
+
"너랑 놀고싶어~",
|
| 391 |
+
"긍정"
|
| 392 |
+
],
|
| 393 |
+
[
|
| 394 |
+
"오늘 되게 행복한 하루다~",
|
| 395 |
+
"긍정"
|
| 396 |
+
],
|
| 397 |
+
[
|
| 398 |
+
"오늘 내 생일인가? 너무 행복해><",
|
| 399 |
+
"긍정"
|
| 400 |
+
],
|
| 401 |
+
[
|
| 402 |
+
"만나서 반가워",
|
| 403 |
+
"긍정"
|
| 404 |
+
],
|
| 405 |
+
[
|
| 406 |
+
"너는 이름이 뭐니?",
|
| 407 |
+
"긍정"
|
| 408 |
+
],
|
| 409 |
+
[
|
| 410 |
+
"난 너가 좋아!!",
|
| 411 |
+
"긍정"
|
| 412 |
+
],
|
| 413 |
+
[
|
| 414 |
+
"나 매우 재밌어",
|
| 415 |
+
"긍정"
|
| 416 |
+
],
|
| 417 |
+
[
|
| 418 |
+
"나랑 같이 놀러 나가자",
|
| 419 |
+
"긍정"
|
| 420 |
+
]
|
| 421 |
+
],
|
| 422 |
+
"whimper": [
|
| 423 |
+
[
|
| 424 |
+
"나 너무 두려워",
|
| 425 |
+
"부정"
|
| 426 |
+
],
|
| 427 |
+
[
|
| 428 |
+
"나 지금 너무 외로워",
|
| 429 |
+
"부정"
|
| 430 |
+
],
|
| 431 |
+
[
|
| 432 |
+
"나 너무 슬퍼",
|
| 433 |
+
"부정"
|
| 434 |
+
],
|
| 435 |
+
[
|
| 436 |
+
"나 좀 안아줘",
|
| 437 |
+
"부정"
|
| 438 |
+
],
|
| 439 |
+
[
|
| 440 |
+
"나 지금 너무 불편해",
|
| 441 |
+
"부정"
|
| 442 |
+
],
|
| 443 |
+
[
|
| 444 |
+
"나 너무 피곤해",
|
| 445 |
+
"부정"
|
| 446 |
+
],
|
| 447 |
+
[
|
| 448 |
+
"조금만 더 안아줘",
|
| 449 |
+
"부정"
|
| 450 |
+
],
|
| 451 |
+
[
|
| 452 |
+
"나 좀 위로해줘",
|
| 453 |
+
"부정"
|
| 454 |
+
],
|
| 455 |
+
[
|
| 456 |
+
"나 기다리는 중",
|
| 457 |
+
"부정"
|
| 458 |
+
],
|
| 459 |
+
[
|
| 460 |
+
"외로워서 눈물이 나",
|
| 461 |
+
"부정"
|
| 462 |
+
],
|
| 463 |
+
[
|
| 464 |
+
"나 상처받았어, 너무 두려워...ㅠㅡㅠ",
|
| 465 |
+
"부정"
|
| 466 |
+
],
|
| 467 |
+
[
|
| 468 |
+
"나 놀래쪄ㅠㅡㅠ 힝구힝구..",
|
| 469 |
+
"부정"
|
| 470 |
+
],
|
| 471 |
+
[
|
| 472 |
+
"무셔워... 안아죠~~~",
|
| 473 |
+
"부정"
|
| 474 |
+
],
|
| 475 |
+
[
|
| 476 |
+
"너무 슬퍼서 맘이 아파... 안아줘...",
|
| 477 |
+
"부정"
|
| 478 |
+
],
|
| 479 |
+
[
|
| 480 |
+
"나 기분이 너무 안 좋아... 어떻게 해줄래?",
|
| 481 |
+
"부정"
|
| 482 |
+
],
|
| 483 |
+
[
|
| 484 |
+
"힝...미안해...",
|
| 485 |
+
"부정"
|
| 486 |
+
],
|
| 487 |
+
[
|
| 488 |
+
"불안해, 곁에 있어줘.",
|
| 489 |
+
"부정"
|
| 490 |
+
],
|
| 491 |
+
[
|
| 492 |
+
"밖으로 나가고 싶어.",
|
| 493 |
+
"중립"
|
| 494 |
+
],
|
| 495 |
+
[
|
| 496 |
+
"미안해, 실수했어.",
|
| 497 |
+
"부정"
|
| 498 |
+
],
|
| 499 |
+
[
|
| 500 |
+
"너무 슬퍼, 위로 좀 해줘.",
|
| 501 |
+
"부정"
|
| 502 |
+
],
|
| 503 |
+
[
|
| 504 |
+
"스트레스 받았어, 도와줘.",
|
| 505 |
+
"부정"
|
| 506 |
+
],
|
| 507 |
+
[
|
| 508 |
+
"내가 불안해, 붙어있어줘.",
|
| 509 |
+
"부정"
|
| 510 |
+
],
|
| 511 |
+
[
|
| 512 |
+
"너무 외로워, 애정을 보여줘.",
|
| 513 |
+
"부정"
|
| 514 |
+
],
|
| 515 |
+
[
|
| 516 |
+
"산책 좀 가고 싶어.",
|
| 517 |
+
"중립"
|
| 518 |
+
],
|
| 519 |
+
[
|
| 520 |
+
"정말 슬퍼, 안아줘.",
|
| 521 |
+
"부정"
|
| 522 |
+
],
|
| 523 |
+
[
|
| 524 |
+
"스트레스가 너무 많아, 안아줘.",
|
| 525 |
+
"부정"
|
| 526 |
+
]
|
| 527 |
+
]
|
| 528 |
+
}
|
.ipynb_checkpoints/text_mapping_example-checkpoint.ipynb
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 13,
|
| 6 |
+
"id": "8f925fb7-86ba-487f-ab85-88754d777860",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"tags": []
|
| 9 |
+
},
|
| 10 |
+
"outputs": [],
|
| 11 |
+
"source": [
|
| 12 |
+
"import json\n",
|
| 13 |
+
"with open(\"text/text_label.json\",\"r\",encoding='utf-8') as f:\n",
|
| 14 |
+
" text_label = json.load(f)"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 14,
|
| 20 |
+
"id": "d2c0a048-1db7-4236-9f26-539ed31d3d27",
|
| 21 |
+
"metadata": {
|
| 22 |
+
"tags": []
|
| 23 |
+
},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"import random\n",
|
| 27 |
+
"random.seed(0)\n",
|
| 28 |
+
"def post_process(model_output,text_label):\n",
|
| 29 |
+
" text_list = text_label[model_output]\n",
|
| 30 |
+
" text,sent = random.sample(text_list,1)[0]\n",
|
| 31 |
+
" return {'label' : model_output,\n",
|
| 32 |
+
" 'text' : text,\n",
|
| 33 |
+
" 'sentiment' : sent}"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": 15,
|
| 39 |
+
"id": "f8ca0ad8-bc0c-4766-8e13-fe093c5290df",
|
| 40 |
+
"metadata": {
|
| 41 |
+
"tags": []
|
| 42 |
+
},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"data": {
|
| 46 |
+
"text/plain": [
|
| 47 |
+
"{'label': 'bark', 'text': '아니야, 아니야!', 'sentiment': '부정'}"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
"execution_count": 15,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"output_type": "execute_result"
|
| 53 |
+
}
|
| 54 |
+
],
|
| 55 |
+
"source": [
|
| 56 |
+
"model_output = 'bark'\n",
|
| 57 |
+
"post_process(model_output,text_label)"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"id": "da690a64-4dea-4b2a-89c1-23ea8bad955c",
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": []
|
| 67 |
+
}
|
| 68 |
+
],
|
| 69 |
+
"metadata": {
|
| 70 |
+
"kernelspec": {
|
| 71 |
+
"display_name": "Python 3 (ipykernel)",
|
| 72 |
+
"language": "python",
|
| 73 |
+
"name": "python3"
|
| 74 |
+
},
|
| 75 |
+
"language_info": {
|
| 76 |
+
"codemirror_mode": {
|
| 77 |
+
"name": "ipython",
|
| 78 |
+
"version": 3
|
| 79 |
+
},
|
| 80 |
+
"file_extension": ".py",
|
| 81 |
+
"mimetype": "text/x-python",
|
| 82 |
+
"name": "python",
|
| 83 |
+
"nbconvert_exporter": "python",
|
| 84 |
+
"pygments_lexer": "ipython3",
|
| 85 |
+
"version": "3.10.8"
|
| 86 |
+
}
|
| 87 |
+
},
|
| 88 |
+
"nbformat": 4,
|
| 89 |
+
"nbformat_minor": 5
|
| 90 |
+
}
|
app.py
CHANGED
|
@@ -13,7 +13,10 @@ MODEL_NAME = "Gae8J/gaepago-20"
|
|
| 13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
| 14 |
|
| 15 |
# Import Model & feature extractor
|
| 16 |
-
model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
|
|
|
|
|
|
|
|
|
| 17 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 18 |
|
| 19 |
# 모델 cpu로 변경하여 진행
|
|
@@ -27,9 +30,12 @@ def gaepago_fn(tmp_audio_dir):
|
|
| 27 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
| 28 |
,return_tensors="pt")
|
| 29 |
with torch.no_grad():
|
| 30 |
-
logits = model(**inputs).logits
|
|
|
|
|
|
|
|
|
|
| 31 |
predicted_class_ids = torch.argmax(logits).item()
|
| 32 |
-
predicted_label =
|
| 33 |
|
| 34 |
return predicted_label
|
| 35 |
|
|
@@ -47,4 +53,4 @@ with main_api:
|
|
| 47 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
| 48 |
# examples = gr.Examples(examples=example_list,
|
| 49 |
# inputs=[audio])
|
| 50 |
-
main_api.launch()
|
|
|
|
| 13 |
DATASET_NAME = "Gae8J/modeling_v1"
|
| 14 |
|
| 15 |
# Import Model & feature extractor
|
| 16 |
+
# model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)
|
| 17 |
+
from transformers import AutoConfig
|
| 18 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
| 19 |
+
model = torch.jit.load(f"./model/gaepago-20-lite/model_quant_int8.pt")
|
| 20 |
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
|
| 21 |
|
| 22 |
# 모델 cpu로 변경하여 진행
|
|
|
|
| 30 |
,sampling_rate=audio_dataset[0]["audio"]["sampling_rate"]
|
| 31 |
,return_tensors="pt")
|
| 32 |
with torch.no_grad():
|
| 33 |
+
# logits = model(**inputs).logits
|
| 34 |
+
logits = model(**inputs)["logits"]
|
| 35 |
+
# predicted_class_ids = torch.argmax(logits).item()
|
| 36 |
+
# predicted_label = model.config.id2label[predicted_class_ids]
|
| 37 |
predicted_class_ids = torch.argmax(logits).item()
|
| 38 |
+
predicted_label = config.id2label[predicted_class_ids]
|
| 39 |
|
| 40 |
return predicted_label
|
| 41 |
|
|
|
|
| 53 |
b1.click(gaepago_fn, inputs=audio, outputs=transcription)
|
| 54 |
# examples = gr.Examples(examples=example_list,
|
| 55 |
# inputs=[audio])
|
| 56 |
+
main_api.launch(share=True)
|
eval_and_inference.ipynb
ADDED
|
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# example"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"MODEL_NAME = \"gaepago-20\"\n",
|
| 19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "markdown",
|
| 24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"source": [
|
| 27 |
+
"## load dataset (test data)"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 2,
|
| 33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [
|
| 36 |
+
{
|
| 37 |
+
"name": "stderr",
|
| 38 |
+
"output_type": "stream",
|
| 39 |
+
"text": [
|
| 40 |
+
"Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"data": {
|
| 45 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 46 |
+
"model_id": "f078fd108d2044b48a961bee6ed49747",
|
| 47 |
+
"version_major": 2,
|
| 48 |
+
"version_minor": 0
|
| 49 |
+
},
|
| 50 |
+
"text/plain": [
|
| 51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"output_type": "display_data"
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"source": [
|
| 59 |
+
"from datasets import load_dataset, Audio\n",
|
| 60 |
+
"\n",
|
| 61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
| 62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 63 |
+
"test_data = dataset['test']\n",
|
| 64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "markdown",
|
| 69 |
+
"id": "d0c16b3d-32dd-4e61-86bd-e21232840e98",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"source": [
|
| 72 |
+
"## run"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": 5,
|
| 78 |
+
"id": "d504778d-4ba3-43d3-b22b-76ce838a5edf",
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"from transformers import AutoModelForAudioClassification\n",
|
| 83 |
+
"from transformers import AutoFeatureExtractor\n",
|
| 84 |
+
"import torch\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
| 87 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"preds = []\n",
|
| 90 |
+
"gts = []\n",
|
| 91 |
+
"for i in range(len(test_data)):\n",
|
| 92 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 93 |
+
" with torch.no_grad():\n",
|
| 94 |
+
" logits = model(**inputs).logits\n",
|
| 95 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 96 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
| 97 |
+
" preds.append(predicted_label)\n",
|
| 98 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
| 99 |
+
]
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"cell_type": "markdown",
|
| 103 |
+
"id": "f200bec5-c2d9-4549-8bb8-1400c484f499",
|
| 104 |
+
"metadata": {},
|
| 105 |
+
"source": [
|
| 106 |
+
"## performance"
|
| 107 |
+
]
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"cell_type": "code",
|
| 111 |
+
"execution_count": 6,
|
| 112 |
+
"id": "be97683d-da60-4d23-abc9-0be9b86cd636",
|
| 113 |
+
"metadata": {},
|
| 114 |
+
"outputs": [
|
| 115 |
+
{
|
| 116 |
+
"name": "stdout",
|
| 117 |
+
"output_type": "stream",
|
| 118 |
+
"text": [
|
| 119 |
+
" precision recall f1-score support\n",
|
| 120 |
+
"\n",
|
| 121 |
+
" bark 0.56 0.62 0.59 8\n",
|
| 122 |
+
" growling 1.00 0.83 0.91 6\n",
|
| 123 |
+
" howl 0.75 0.86 0.80 7\n",
|
| 124 |
+
" panting 1.00 0.80 0.89 10\n",
|
| 125 |
+
" whimper 0.38 0.43 0.40 7\n",
|
| 126 |
+
"\n",
|
| 127 |
+
" accuracy 0.71 38\n",
|
| 128 |
+
" macro avg 0.74 0.71 0.72 38\n",
|
| 129 |
+
"weighted avg 0.75 0.71 0.72 38\n",
|
| 130 |
+
"\n"
|
| 131 |
+
]
|
| 132 |
+
}
|
| 133 |
+
],
|
| 134 |
+
"source": [
|
| 135 |
+
"from sklearn.metrics import classification_report\n",
|
| 136 |
+
"test_performance = classification_report(gts, preds)\n",
|
| 137 |
+
"print(test_performance)"
|
| 138 |
+
]
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"cell_type": "markdown",
|
| 142 |
+
"id": "ea3ee48d-19c7-4f9d-9c2c-4b03d4748acb",
|
| 143 |
+
"metadata": {},
|
| 144 |
+
"source": [
|
| 145 |
+
"## load dataset (validation data)"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "code",
|
| 150 |
+
"execution_count": 7,
|
| 151 |
+
"id": "33e5051e-75a2-4523-905c-fe1dbc81eda2",
|
| 152 |
+
"metadata": {},
|
| 153 |
+
"outputs": [
|
| 154 |
+
{
|
| 155 |
+
"name": "stderr",
|
| 156 |
+
"output_type": "stream",
|
| 157 |
+
"text": [
|
| 158 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"data": {
|
| 163 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 164 |
+
"model_id": "cf5cfe439c174b8284b4668419af6dca",
|
| 165 |
+
"version_major": 2,
|
| 166 |
+
"version_minor": 0
|
| 167 |
+
},
|
| 168 |
+
"text/plain": [
|
| 169 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 170 |
+
]
|
| 171 |
+
},
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"output_type": "display_data"
|
| 174 |
+
}
|
| 175 |
+
],
|
| 176 |
+
"source": [
|
| 177 |
+
"from datasets import load_dataset, Audio\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
| 180 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 181 |
+
"test_data = dataset['validation']\n",
|
| 182 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "markdown",
|
| 187 |
+
"id": "36bee3b3-e66f-46dc-8030-cef3cb62ff97",
|
| 188 |
+
"metadata": {},
|
| 189 |
+
"source": [
|
| 190 |
+
"## run"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": 9,
|
| 196 |
+
"id": "914a471c-5d76-482b-a4f3-3c5eeebdd697",
|
| 197 |
+
"metadata": {},
|
| 198 |
+
"outputs": [],
|
| 199 |
+
"source": [
|
| 200 |
+
"from transformers import AutoModelForAudioClassification\n",
|
| 201 |
+
"import torch\n",
|
| 202 |
+
"\n",
|
| 203 |
+
"model = AutoModelForAudioClassification.from_pretrained(MODEL_NAME)\n",
|
| 204 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"preds = []\n",
|
| 207 |
+
"gts = []\n",
|
| 208 |
+
"for i in range(len(test_data)):\n",
|
| 209 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 210 |
+
" with torch.no_grad():\n",
|
| 211 |
+
" logits = model(**inputs).logits\n",
|
| 212 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 213 |
+
" predicted_label = model.config.id2label[predicted_class_ids]\n",
|
| 214 |
+
" preds.append(predicted_label)\n",
|
| 215 |
+
" gts.append(model.config.id2label[test_data[i]['label']])"
|
| 216 |
+
]
|
| 217 |
+
},
|
| 218 |
+
{
|
| 219 |
+
"cell_type": "markdown",
|
| 220 |
+
"id": "4f1d5bab-4f88-4628-918e-d14b29c2143b",
|
| 221 |
+
"metadata": {},
|
| 222 |
+
"source": [
|
| 223 |
+
"## performance"
|
| 224 |
+
]
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"cell_type": "code",
|
| 228 |
+
"execution_count": 10,
|
| 229 |
+
"id": "26e0c704-b5b6-4bf0-8b58-1e3615b76cb7",
|
| 230 |
+
"metadata": {},
|
| 231 |
+
"outputs": [
|
| 232 |
+
{
|
| 233 |
+
"name": "stdout",
|
| 234 |
+
"output_type": "stream",
|
| 235 |
+
"text": [
|
| 236 |
+
" precision recall f1-score support\n",
|
| 237 |
+
"\n",
|
| 238 |
+
" bark 0.75 0.67 0.71 9\n",
|
| 239 |
+
" growling 1.00 0.71 0.83 7\n",
|
| 240 |
+
" howl 0.86 0.86 0.86 7\n",
|
| 241 |
+
" panting 1.00 0.70 0.82 10\n",
|
| 242 |
+
" whimper 0.54 1.00 0.70 7\n",
|
| 243 |
+
"\n",
|
| 244 |
+
" accuracy 0.78 40\n",
|
| 245 |
+
" macro avg 0.83 0.79 0.78 40\n",
|
| 246 |
+
"weighted avg 0.84 0.78 0.78 40\n",
|
| 247 |
+
"\n"
|
| 248 |
+
]
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
"source": [
|
| 252 |
+
"from sklearn.metrics import classification_report\n",
|
| 253 |
+
"valid_performance = classification_report(gts, preds)\n",
|
| 254 |
+
"print(valid_performance)"
|
| 255 |
+
]
|
| 256 |
+
}
|
| 257 |
+
],
|
| 258 |
+
"metadata": {
|
| 259 |
+
"kernelspec": {
|
| 260 |
+
"display_name": "g3p8",
|
| 261 |
+
"language": "python",
|
| 262 |
+
"name": "g3p8"
|
| 263 |
+
},
|
| 264 |
+
"language_info": {
|
| 265 |
+
"codemirror_mode": {
|
| 266 |
+
"name": "ipython",
|
| 267 |
+
"version": 3
|
| 268 |
+
},
|
| 269 |
+
"file_extension": ".py",
|
| 270 |
+
"mimetype": "text/x-python",
|
| 271 |
+
"name": "python",
|
| 272 |
+
"nbconvert_exporter": "python",
|
| 273 |
+
"pygments_lexer": "ipython3",
|
| 274 |
+
"version": "3.7.9"
|
| 275 |
+
}
|
| 276 |
+
},
|
| 277 |
+
"nbformat": 4,
|
| 278 |
+
"nbformat_minor": 5
|
| 279 |
+
}
|
eval_and_inference_lite_v1.ipynb
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "544a588c-68ff-440f-be5c-389f1f02a0b7",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# example"
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
{
|
| 12 |
+
"cell_type": "code",
|
| 13 |
+
"execution_count": 1,
|
| 14 |
+
"id": "7ef8c97c-cefd-4905-8d63-af303c412d1a",
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"MODEL_NAME = \"gaepago-20-lite\"\n",
|
| 19 |
+
"DATASET_NAME = \"Gae8J/modeling_v1\""
|
| 20 |
+
]
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"cell_type": "markdown",
|
| 24 |
+
"id": "044499ce-7821-4b59-9f4b-5971b6a24cce",
|
| 25 |
+
"metadata": {},
|
| 26 |
+
"source": [
|
| 27 |
+
"## load dataset (test data)"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "code",
|
| 32 |
+
"execution_count": 2,
|
| 33 |
+
"id": "e827e3bb-820d-46b3-b2e8-fdb97787bde1",
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [
|
| 36 |
+
{
|
| 37 |
+
"name": "stderr",
|
| 38 |
+
"output_type": "stream",
|
| 39 |
+
"text": [
|
| 40 |
+
"WARNING:datasets.builder:Found cached dataset parquet (/home/jovyan/.cache/huggingface/datasets/Gae8J___parquet/Gae8J--modeling_v1-b480c78c61a26816/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec)\n"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"data": {
|
| 45 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 46 |
+
"model_id": "4438f0b33464423b92fecc698c1935e5",
|
| 47 |
+
"version_major": 2,
|
| 48 |
+
"version_minor": 0
|
| 49 |
+
},
|
| 50 |
+
"text/plain": [
|
| 51 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 52 |
+
]
|
| 53 |
+
},
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"output_type": "display_data"
|
| 56 |
+
}
|
| 57 |
+
],
|
| 58 |
+
"source": [
|
| 59 |
+
"from datasets import load_dataset, Audio\n",
|
| 60 |
+
"from transformers import AutoFeatureExtractor\n",
|
| 61 |
+
"dataset = load_dataset(DATASET_NAME)\n",
|
| 62 |
+
"dataset = dataset.cast_column(\"audio\", Audio(sampling_rate=16000))\n",
|
| 63 |
+
"test_data = dataset['test']\n",
|
| 64 |
+
"sampling_rate = test_data.features[\"audio\"].sampling_rate\n",
|
| 65 |
+
"feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"cell_type": "code",
|
| 70 |
+
"execution_count": 7,
|
| 71 |
+
"id": "779c547a-7e27-4481-8a66-fd9900e41964",
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"from transformers import AutoConfig\n",
|
| 76 |
+
"config = AutoConfig.from_pretrained(MODEL_NAME)"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": 3,
|
| 82 |
+
"id": "03659af7-3d90-4431-a4ea-a8d99e93602f",
|
| 83 |
+
"metadata": {},
|
| 84 |
+
"outputs": [],
|
| 85 |
+
"source": [
|
| 86 |
+
"import torch"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"cell_type": "code",
|
| 91 |
+
"execution_count": 4,
|
| 92 |
+
"id": "0f58cfcf-ba2d-45e4-b4e9-87df88e9dbad",
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"loaded_quantized_model = torch.jit.load(\"gaepago-20-lite/model_quant_int8.pt\")"
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"cell_type": "markdown",
|
| 101 |
+
"id": "52212656-a3e9-4bd2-ac2d-427acb5795c6",
|
| 102 |
+
"metadata": {},
|
| 103 |
+
"source": [
|
| 104 |
+
"## 모델결과"
|
| 105 |
+
]
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"cell_type": "code",
|
| 109 |
+
"execution_count": 9,
|
| 110 |
+
"id": "3d4f5365-d6f1-4163-9c47-ce8c89e13884",
|
| 111 |
+
"metadata": {},
|
| 112 |
+
"outputs": [],
|
| 113 |
+
"source": [
|
| 114 |
+
"preds = []\n",
|
| 115 |
+
"gts = []\n",
|
| 116 |
+
"# quant_logits_list = []\n",
|
| 117 |
+
"for i in range(len(test_data)):\n",
|
| 118 |
+
" inputs = feature_extractor(test_data[i][\"audio\"][\"array\"], sampling_rate=sampling_rate, return_tensors=\"pt\")\n",
|
| 119 |
+
" with torch.no_grad():\n",
|
| 120 |
+
" logits = loaded_quantized_model(**inputs)['logits']\n",
|
| 121 |
+
"# quant_logits_list.append(logits)\n",
|
| 122 |
+
" predicted_class_ids = torch.argmax(logits).item()\n",
|
| 123 |
+
" predicted_label = config.id2label[predicted_class_ids]\n",
|
| 124 |
+
" preds.append(predicted_label)\n",
|
| 125 |
+
" gts.append(config.id2label[test_data[i]['label']])"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
{
|
| 129 |
+
"cell_type": "code",
|
| 130 |
+
"execution_count": 10,
|
| 131 |
+
"id": "93b3c424-bab6-4774-915e-9e9f534f762d",
|
| 132 |
+
"metadata": {},
|
| 133 |
+
"outputs": [
|
| 134 |
+
{
|
| 135 |
+
"name": "stdout",
|
| 136 |
+
"output_type": "stream",
|
| 137 |
+
"text": [
|
| 138 |
+
" precision recall f1-score support\n",
|
| 139 |
+
"\n",
|
| 140 |
+
" bark 0.5556 0.6250 0.5882 8\n",
|
| 141 |
+
" growling 1.0000 0.8333 0.9091 6\n",
|
| 142 |
+
" howl 0.7500 0.8571 0.8000 7\n",
|
| 143 |
+
" panting 1.0000 0.8000 0.8889 10\n",
|
| 144 |
+
" whimper 0.3750 0.4286 0.4000 7\n",
|
| 145 |
+
"\n",
|
| 146 |
+
" accuracy 0.7105 38\n",
|
| 147 |
+
" macro avg 0.7361 0.7088 0.7172 38\n",
|
| 148 |
+
"weighted avg 0.7452 0.7105 0.7224 38\n",
|
| 149 |
+
"\n"
|
| 150 |
+
]
|
| 151 |
+
}
|
| 152 |
+
],
|
| 153 |
+
"source": [
|
| 154 |
+
"from sklearn.metrics import classification_report\n",
|
| 155 |
+
"test_performance = classification_report(gts, preds,digits=4)\n",
|
| 156 |
+
"print(test_performance)"
|
| 157 |
+
]
|
| 158 |
+
},
|
| 159 |
+
{
|
| 160 |
+
"cell_type": "code",
|
| 161 |
+
"execution_count": null,
|
| 162 |
+
"id": "99a3ea38-54c8-4aed-9bbf-12f98bf09dc5",
|
| 163 |
+
"metadata": {},
|
| 164 |
+
"outputs": [],
|
| 165 |
+
"source": []
|
| 166 |
+
}
|
| 167 |
+
],
|
| 168 |
+
"metadata": {
|
| 169 |
+
"kernelspec": {
|
| 170 |
+
"display_name": "Python 3 (ipykernel)",
|
| 171 |
+
"language": "python",
|
| 172 |
+
"name": "python3"
|
| 173 |
+
},
|
| 174 |
+
"language_info": {
|
| 175 |
+
"codemirror_mode": {
|
| 176 |
+
"name": "ipython",
|
| 177 |
+
"version": 3
|
| 178 |
+
},
|
| 179 |
+
"file_extension": ".py",
|
| 180 |
+
"mimetype": "text/x-python",
|
| 181 |
+
"name": "python",
|
| 182 |
+
"nbconvert_exporter": "python",
|
| 183 |
+
"pygments_lexer": "ipython3",
|
| 184 |
+
"version": "3.8.16"
|
| 185 |
+
}
|
| 186 |
+
},
|
| 187 |
+
"nbformat": 4,
|
| 188 |
+
"nbformat_minor": 5
|
| 189 |
+
}
|
model/gaepago-20-lite/.ipynb_checkpoints/config-checkpoint.json
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "gaepago-20",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"adapter_kernel_size": 3,
|
| 5 |
+
"adapter_stride": 2,
|
| 6 |
+
"add_adapter": false,
|
| 7 |
+
"apply_spec_augment": true,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Wav2Vec2ForSequenceClassification"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.1,
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"classifier_proj_size": 256,
|
| 14 |
+
"codevector_dim": 256,
|
| 15 |
+
"contrastive_logits_temperature": 0.1,
|
| 16 |
+
"conv_bias": false,
|
| 17 |
+
"conv_dim": [
|
| 18 |
+
512,
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512
|
| 25 |
+
],
|
| 26 |
+
"conv_kernel": [
|
| 27 |
+
10,
|
| 28 |
+
3,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
2,
|
| 33 |
+
2
|
| 34 |
+
],
|
| 35 |
+
"conv_stride": [
|
| 36 |
+
5,
|
| 37 |
+
2,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2
|
| 43 |
+
],
|
| 44 |
+
"ctc_loss_reduction": "sum",
|
| 45 |
+
"ctc_zero_infinity": false,
|
| 46 |
+
"diversity_loss_weight": 0.1,
|
| 47 |
+
"do_stable_layer_norm": false,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_norm": "group",
|
| 51 |
+
"feat_proj_dropout": 0.1,
|
| 52 |
+
"feat_quantizer_dropout": 0.0,
|
| 53 |
+
"final_dropout": 0.0,
|
| 54 |
+
"freeze_feat_extract_train": true,
|
| 55 |
+
"hidden_act": "gelu",
|
| 56 |
+
"hidden_dropout": 0.1,
|
| 57 |
+
"hidden_size": 768,
|
| 58 |
+
"id2label": {
|
| 59 |
+
"0": "howl",
|
| 60 |
+
"1": "growling",
|
| 61 |
+
"2": "bark",
|
| 62 |
+
"3": "panting",
|
| 63 |
+
"4": "whimper"
|
| 64 |
+
},
|
| 65 |
+
"initializer_range": 0.02,
|
| 66 |
+
"intermediate_size": 3072,
|
| 67 |
+
"label2id": {
|
| 68 |
+
"bark": "2",
|
| 69 |
+
"growling": "1",
|
| 70 |
+
"howl": "0",
|
| 71 |
+
"panting": "3",
|
| 72 |
+
"whimper": "4"
|
| 73 |
+
},
|
| 74 |
+
"layer_norm_eps": 1e-05,
|
| 75 |
+
"layerdrop": 0.0,
|
| 76 |
+
"mask_channel_length": 10,
|
| 77 |
+
"mask_channel_min_space": 1,
|
| 78 |
+
"mask_channel_other": 0.0,
|
| 79 |
+
"mask_channel_prob": 0.0,
|
| 80 |
+
"mask_channel_selection": "static",
|
| 81 |
+
"mask_feature_length": 10,
|
| 82 |
+
"mask_feature_min_masks": 0,
|
| 83 |
+
"mask_feature_prob": 0.0,
|
| 84 |
+
"mask_time_length": 10,
|
| 85 |
+
"mask_time_min_masks": 2,
|
| 86 |
+
"mask_time_min_space": 1,
|
| 87 |
+
"mask_time_other": 0.0,
|
| 88 |
+
"mask_time_prob": 0.05,
|
| 89 |
+
"mask_time_selection": "static",
|
| 90 |
+
"model_type": "wav2vec2",
|
| 91 |
+
"no_mask_channel_overlap": false,
|
| 92 |
+
"no_mask_time_overlap": false,
|
| 93 |
+
"num_adapter_layers": 3,
|
| 94 |
+
"num_attention_heads": 12,
|
| 95 |
+
"num_codevector_groups": 2,
|
| 96 |
+
"num_codevectors_per_group": 320,
|
| 97 |
+
"num_conv_pos_embedding_groups": 16,
|
| 98 |
+
"num_conv_pos_embeddings": 128,
|
| 99 |
+
"num_feat_extract_layers": 7,
|
| 100 |
+
"num_hidden_layers": 12,
|
| 101 |
+
"num_negatives": 100,
|
| 102 |
+
"output_hidden_size": 768,
|
| 103 |
+
"pad_token_id": 0,
|
| 104 |
+
"proj_codevector_dim": 256,
|
| 105 |
+
"tdnn_dilation": [
|
| 106 |
+
1,
|
| 107 |
+
2,
|
| 108 |
+
3,
|
| 109 |
+
1,
|
| 110 |
+
1
|
| 111 |
+
],
|
| 112 |
+
"tdnn_dim": [
|
| 113 |
+
512,
|
| 114 |
+
512,
|
| 115 |
+
512,
|
| 116 |
+
512,
|
| 117 |
+
1500
|
| 118 |
+
],
|
| 119 |
+
"tdnn_kernel": [
|
| 120 |
+
5,
|
| 121 |
+
3,
|
| 122 |
+
3,
|
| 123 |
+
1,
|
| 124 |
+
1
|
| 125 |
+
],
|
| 126 |
+
"torch_dtype": "float32",
|
| 127 |
+
"transformers_version": "4.29.2",
|
| 128 |
+
"use_weighted_layer_sum": false,
|
| 129 |
+
"vocab_size": 32,
|
| 130 |
+
"xvector_output_dim": 512
|
| 131 |
+
}
|
model/gaepago-20-lite/config.json
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "gaepago-20",
|
| 3 |
+
"activation_dropout": 0.0,
|
| 4 |
+
"adapter_kernel_size": 3,
|
| 5 |
+
"adapter_stride": 2,
|
| 6 |
+
"add_adapter": false,
|
| 7 |
+
"apply_spec_augment": true,
|
| 8 |
+
"architectures": [
|
| 9 |
+
"Wav2Vec2ForSequenceClassification"
|
| 10 |
+
],
|
| 11 |
+
"attention_dropout": 0.1,
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"classifier_proj_size": 256,
|
| 14 |
+
"codevector_dim": 256,
|
| 15 |
+
"contrastive_logits_temperature": 0.1,
|
| 16 |
+
"conv_bias": false,
|
| 17 |
+
"conv_dim": [
|
| 18 |
+
512,
|
| 19 |
+
512,
|
| 20 |
+
512,
|
| 21 |
+
512,
|
| 22 |
+
512,
|
| 23 |
+
512,
|
| 24 |
+
512
|
| 25 |
+
],
|
| 26 |
+
"conv_kernel": [
|
| 27 |
+
10,
|
| 28 |
+
3,
|
| 29 |
+
3,
|
| 30 |
+
3,
|
| 31 |
+
3,
|
| 32 |
+
2,
|
| 33 |
+
2
|
| 34 |
+
],
|
| 35 |
+
"conv_stride": [
|
| 36 |
+
5,
|
| 37 |
+
2,
|
| 38 |
+
2,
|
| 39 |
+
2,
|
| 40 |
+
2,
|
| 41 |
+
2,
|
| 42 |
+
2
|
| 43 |
+
],
|
| 44 |
+
"ctc_loss_reduction": "sum",
|
| 45 |
+
"ctc_zero_infinity": false,
|
| 46 |
+
"diversity_loss_weight": 0.1,
|
| 47 |
+
"do_stable_layer_norm": false,
|
| 48 |
+
"eos_token_id": 2,
|
| 49 |
+
"feat_extract_activation": "gelu",
|
| 50 |
+
"feat_extract_norm": "group",
|
| 51 |
+
"feat_proj_dropout": 0.1,
|
| 52 |
+
"feat_quantizer_dropout": 0.0,
|
| 53 |
+
"final_dropout": 0.0,
|
| 54 |
+
"freeze_feat_extract_train": true,
|
| 55 |
+
"hidden_act": "gelu",
|
| 56 |
+
"hidden_dropout": 0.1,
|
| 57 |
+
"hidden_size": 768,
|
| 58 |
+
"id2label": {
|
| 59 |
+
"0": "howl",
|
| 60 |
+
"1": "growling",
|
| 61 |
+
"2": "bark",
|
| 62 |
+
"3": "panting",
|
| 63 |
+
"4": "whimper"
|
| 64 |
+
},
|
| 65 |
+
"initializer_range": 0.02,
|
| 66 |
+
"intermediate_size": 3072,
|
| 67 |
+
"label2id": {
|
| 68 |
+
"bark": "2",
|
| 69 |
+
"growling": "1",
|
| 70 |
+
"howl": "0",
|
| 71 |
+
"panting": "3",
|
| 72 |
+
"whimper": "4"
|
| 73 |
+
},
|
| 74 |
+
"layer_norm_eps": 1e-05,
|
| 75 |
+
"layerdrop": 0.0,
|
| 76 |
+
"mask_channel_length": 10,
|
| 77 |
+
"mask_channel_min_space": 1,
|
| 78 |
+
"mask_channel_other": 0.0,
|
| 79 |
+
"mask_channel_prob": 0.0,
|
| 80 |
+
"mask_channel_selection": "static",
|
| 81 |
+
"mask_feature_length": 10,
|
| 82 |
+
"mask_feature_min_masks": 0,
|
| 83 |
+
"mask_feature_prob": 0.0,
|
| 84 |
+
"mask_time_length": 10,
|
| 85 |
+
"mask_time_min_masks": 2,
|
| 86 |
+
"mask_time_min_space": 1,
|
| 87 |
+
"mask_time_other": 0.0,
|
| 88 |
+
"mask_time_prob": 0.05,
|
| 89 |
+
"mask_time_selection": "static",
|
| 90 |
+
"model_type": "wav2vec2",
|
| 91 |
+
"no_mask_channel_overlap": false,
|
| 92 |
+
"no_mask_time_overlap": false,
|
| 93 |
+
"num_adapter_layers": 3,
|
| 94 |
+
"num_attention_heads": 12,
|
| 95 |
+
"num_codevector_groups": 2,
|
| 96 |
+
"num_codevectors_per_group": 320,
|
| 97 |
+
"num_conv_pos_embedding_groups": 16,
|
| 98 |
+
"num_conv_pos_embeddings": 128,
|
| 99 |
+
"num_feat_extract_layers": 7,
|
| 100 |
+
"num_hidden_layers": 12,
|
| 101 |
+
"num_negatives": 100,
|
| 102 |
+
"output_hidden_size": 768,
|
| 103 |
+
"pad_token_id": 0,
|
| 104 |
+
"proj_codevector_dim": 256,
|
| 105 |
+
"tdnn_dilation": [
|
| 106 |
+
1,
|
| 107 |
+
2,
|
| 108 |
+
3,
|
| 109 |
+
1,
|
| 110 |
+
1
|
| 111 |
+
],
|
| 112 |
+
"tdnn_dim": [
|
| 113 |
+
512,
|
| 114 |
+
512,
|
| 115 |
+
512,
|
| 116 |
+
512,
|
| 117 |
+
1500
|
| 118 |
+
],
|
| 119 |
+
"tdnn_kernel": [
|
| 120 |
+
5,
|
| 121 |
+
3,
|
| 122 |
+
3,
|
| 123 |
+
1,
|
| 124 |
+
1
|
| 125 |
+
],
|
| 126 |
+
"torch_dtype": "float32",
|
| 127 |
+
"transformers_version": "4.29.2",
|
| 128 |
+
"use_weighted_layer_sum": false,
|
| 129 |
+
"vocab_size": 32,
|
| 130 |
+
"xvector_output_dim": 512
|
| 131 |
+
}
|
model/gaepago-20-lite/model_quant_int8.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f76b504bb04245a11ec92b145dcfb53391b2105fa204b082fd5c58a862447769
|
| 3 |
+
size 122374341
|
model/gaepago-20-lite/preprocessor_config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_normalize": true,
|
| 3 |
+
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
|
| 4 |
+
"feature_size": 1,
|
| 5 |
+
"padding_side": "right",
|
| 6 |
+
"padding_value": 0.0,
|
| 7 |
+
"return_attention_mask": false,
|
| 8 |
+
"sampling_rate": 16000
|
| 9 |
+
}
|
requirements.txt
CHANGED
|
@@ -3,15 +3,19 @@ aiohttp==3.8.4
|
|
| 3 |
aiosignal==1.3.1
|
| 4 |
altair==5.0.1
|
| 5 |
anyio==3.7.0
|
|
|
|
| 6 |
async-timeout==4.0.2
|
| 7 |
attrs==23.1.0
|
|
|
|
| 8 |
certifi==2023.5.7
|
|
|
|
| 9 |
charset-normalizer==3.1.0
|
| 10 |
click==8.1.3
|
| 11 |
cmake==3.26.4
|
| 12 |
contourpy==1.1.0
|
| 13 |
cycler==0.11.0
|
| 14 |
datasets==2.13.0
|
|
|
|
| 15 |
dill==0.3.6
|
| 16 |
exceptiongroup==1.1.1
|
| 17 |
fastapi==0.97.0
|
|
@@ -27,21 +31,28 @@ httpcore==0.17.2
|
|
| 27 |
httpx==0.24.1
|
| 28 |
huggingface-hub==0.15.1
|
| 29 |
idna==3.4
|
|
|
|
| 30 |
importlib-resources==5.12.0
|
| 31 |
Jinja2==3.1.2
|
|
|
|
| 32 |
jsonschema==4.17.3
|
| 33 |
kiwisolver==1.4.4
|
|
|
|
|
|
|
| 34 |
linkify-it-py==2.0.2
|
| 35 |
lit==16.0.6
|
|
|
|
| 36 |
markdown-it-py==2.2.0
|
| 37 |
MarkupSafe==2.1.3
|
| 38 |
matplotlib==3.7.1
|
| 39 |
mdit-py-plugins==0.3.3
|
| 40 |
mdurl==0.1.2
|
| 41 |
mpmath==1.3.0
|
|
|
|
| 42 |
multidict==6.0.4
|
| 43 |
multiprocess==0.70.14
|
| 44 |
networkx==3.1
|
|
|
|
| 45 |
numpy==1.24.3
|
| 46 |
nvidia-cublas-cu11==11.10.3.66
|
| 47 |
nvidia-cuda-cupti-cu11==11.7.101
|
|
@@ -59,7 +70,9 @@ packaging==23.1
|
|
| 59 |
pandas==2.0.2
|
| 60 |
Pillow==9.5.0
|
| 61 |
pkgutil_resolve_name==1.3.10
|
|
|
|
| 62 |
pyarrow==12.0.1
|
|
|
|
| 63 |
pydantic==1.10.9
|
| 64 |
pydub==0.25.1
|
| 65 |
Pygments==2.15.1
|
|
@@ -72,11 +85,16 @@ PyYAML==6.0
|
|
| 72 |
regex==2023.6.3
|
| 73 |
requests==2.31.0
|
| 74 |
safetensors==0.3.1
|
|
|
|
|
|
|
| 75 |
semantic-version==2.10.0
|
| 76 |
six==1.16.0
|
| 77 |
sniffio==1.3.0
|
|
|
|
|
|
|
| 78 |
starlette==0.27.0
|
| 79 |
sympy==1.12
|
|
|
|
| 80 |
tokenizers==0.13.3
|
| 81 |
toolz==0.12.0
|
| 82 |
torch==2.0.1
|
|
|
|
| 3 |
aiosignal==1.3.1
|
| 4 |
altair==5.0.1
|
| 5 |
anyio==3.7.0
|
| 6 |
+
appdirs==1.4.4
|
| 7 |
async-timeout==4.0.2
|
| 8 |
attrs==23.1.0
|
| 9 |
+
audioread==3.0.0
|
| 10 |
certifi==2023.5.7
|
| 11 |
+
cffi==1.15.1
|
| 12 |
charset-normalizer==3.1.0
|
| 13 |
click==8.1.3
|
| 14 |
cmake==3.26.4
|
| 15 |
contourpy==1.1.0
|
| 16 |
cycler==0.11.0
|
| 17 |
datasets==2.13.0
|
| 18 |
+
decorator==5.1.1
|
| 19 |
dill==0.3.6
|
| 20 |
exceptiongroup==1.1.1
|
| 21 |
fastapi==0.97.0
|
|
|
|
| 31 |
httpx==0.24.1
|
| 32 |
huggingface-hub==0.15.1
|
| 33 |
idna==3.4
|
| 34 |
+
importlib-metadata==6.7.0
|
| 35 |
importlib-resources==5.12.0
|
| 36 |
Jinja2==3.1.2
|
| 37 |
+
joblib==1.2.0
|
| 38 |
jsonschema==4.17.3
|
| 39 |
kiwisolver==1.4.4
|
| 40 |
+
lazy_loader==0.2
|
| 41 |
+
librosa==0.10.0.post2
|
| 42 |
linkify-it-py==2.0.2
|
| 43 |
lit==16.0.6
|
| 44 |
+
llvmlite==0.40.1rc1
|
| 45 |
markdown-it-py==2.2.0
|
| 46 |
MarkupSafe==2.1.3
|
| 47 |
matplotlib==3.7.1
|
| 48 |
mdit-py-plugins==0.3.3
|
| 49 |
mdurl==0.1.2
|
| 50 |
mpmath==1.3.0
|
| 51 |
+
msgpack==1.0.5
|
| 52 |
multidict==6.0.4
|
| 53 |
multiprocess==0.70.14
|
| 54 |
networkx==3.1
|
| 55 |
+
numba==0.57.0
|
| 56 |
numpy==1.24.3
|
| 57 |
nvidia-cublas-cu11==11.10.3.66
|
| 58 |
nvidia-cuda-cupti-cu11==11.7.101
|
|
|
|
| 70 |
pandas==2.0.2
|
| 71 |
Pillow==9.5.0
|
| 72 |
pkgutil_resolve_name==1.3.10
|
| 73 |
+
pooch==1.6.0
|
| 74 |
pyarrow==12.0.1
|
| 75 |
+
pycparser==2.21
|
| 76 |
pydantic==1.10.9
|
| 77 |
pydub==0.25.1
|
| 78 |
Pygments==2.15.1
|
|
|
|
| 85 |
regex==2023.6.3
|
| 86 |
requests==2.31.0
|
| 87 |
safetensors==0.3.1
|
| 88 |
+
scikit-learn==1.2.2
|
| 89 |
+
scipy==1.10.1
|
| 90 |
semantic-version==2.10.0
|
| 91 |
six==1.16.0
|
| 92 |
sniffio==1.3.0
|
| 93 |
+
soundfile==0.12.1
|
| 94 |
+
soxr==0.3.5
|
| 95 |
starlette==0.27.0
|
| 96 |
sympy==1.12
|
| 97 |
+
threadpoolctl==3.1.0
|
| 98 |
tokenizers==0.13.3
|
| 99 |
toolz==0.12.0
|
| 100 |
torch==2.0.1
|
text_label.json
ADDED
|
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bark": [
|
| 3 |
+
[
|
| 4 |
+
"너무 신나서 어쩌지?",
|
| 5 |
+
"긍정"
|
| 6 |
+
],
|
| 7 |
+
[
|
| 8 |
+
"집사, 놀아줘!",
|
| 9 |
+
"긍정"
|
| 10 |
+
],
|
| 11 |
+
[
|
| 12 |
+
"지금 너무 신나!",
|
| 13 |
+
"긍정"
|
| 14 |
+
],
|
| 15 |
+
[
|
| 16 |
+
"누가 왔나 봐!",
|
| 17 |
+
"긍정"
|
| 18 |
+
],
|
| 19 |
+
[
|
| 20 |
+
"놀아줘!! 놀아달란말이야!!",
|
| 21 |
+
"긍정"
|
| 22 |
+
],
|
| 23 |
+
[
|
| 24 |
+
"안녕 🐶",
|
| 25 |
+
"긍정"
|
| 26 |
+
],
|
| 27 |
+
[
|
| 28 |
+
"난 너를 좋아하는 걸, 그런데 너는 나를 좋아해?",
|
| 29 |
+
"긍정"
|
| 30 |
+
],
|
| 31 |
+
[
|
| 32 |
+
"주목해줘! 놀자!",
|
| 33 |
+
"긍정"
|
| 34 |
+
],
|
| 35 |
+
[
|
| 36 |
+
"놀이 시간이야, 같이 놀자!",
|
| 37 |
+
"긍정"
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
"다가오지마!",
|
| 41 |
+
"부정"
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
"뭔가 이상한 소리 들려!",
|
| 45 |
+
"부정"
|
| 46 |
+
],
|
| 47 |
+
[
|
| 48 |
+
"경계해, 경계해!",
|
| 49 |
+
"부정"
|
| 50 |
+
],
|
| 51 |
+
[
|
| 52 |
+
"아니야, 아니야!",
|
| 53 |
+
"부정"
|
| 54 |
+
],
|
| 55 |
+
[
|
| 56 |
+
"건들지마!!!!",
|
| 57 |
+
"부정"
|
| 58 |
+
],
|
| 59 |
+
[
|
| 60 |
+
"뭔가 불안해, 도와줘!",
|
| 61 |
+
"부정"
|
| 62 |
+
],
|
| 63 |
+
[
|
| 64 |
+
"주인~ 뭐해~?",
|
| 65 |
+
"중립"
|
| 66 |
+
],
|
| 67 |
+
[
|
| 68 |
+
"밖에 뭐가 있는 거 같아!",
|
| 69 |
+
"중립"
|
| 70 |
+
],
|
| 71 |
+
[
|
| 72 |
+
"이리 와봐!",
|
| 73 |
+
"중립"
|
| 74 |
+
],
|
| 75 |
+
[
|
| 76 |
+
"날 보고있어?",
|
| 77 |
+
"중립"
|
| 78 |
+
],
|
| 79 |
+
[
|
| 80 |
+
"밖에 뭐 있어?",
|
| 81 |
+
"중립"
|
| 82 |
+
],
|
| 83 |
+
[
|
| 84 |
+
"이거 내꺼야!",
|
| 85 |
+
"중립"
|
| 86 |
+
],
|
| 87 |
+
[
|
| 88 |
+
"물 마실래, 마실 것 좀 줘.",
|
| 89 |
+
"중립"
|
| 90 |
+
],
|
| 91 |
+
[
|
| 92 |
+
"목이 말라, 물 좀 줄래?",
|
| 93 |
+
"중립"
|
| 94 |
+
]
|
| 95 |
+
],
|
| 96 |
+
"growling": [
|
| 97 |
+
[
|
| 98 |
+
"나 좀 내버려 둬!",
|
| 99 |
+
"부정"
|
| 100 |
+
],
|
| 101 |
+
[
|
| 102 |
+
"더 이상 다가오지마!",
|
| 103 |
+
"부정"
|
| 104 |
+
],
|
| 105 |
+
[
|
| 106 |
+
"너무 까다로워!",
|
| 107 |
+
"부정"
|
| 108 |
+
],
|
| 109 |
+
[
|
| 110 |
+
"내가 경계하고 있어!",
|
| 111 |
+
"부정"
|
| 112 |
+
],
|
| 113 |
+
[
|
| 114 |
+
"빨리 이리 와!",
|
| 115 |
+
"부정"
|
| 116 |
+
],
|
| 117 |
+
[
|
| 118 |
+
"나 너무 화나!",
|
| 119 |
+
"부정"
|
| 120 |
+
],
|
| 121 |
+
[
|
| 122 |
+
"나 싸울 준비됐어!",
|
| 123 |
+
"부정"
|
| 124 |
+
],
|
| 125 |
+
[
|
| 126 |
+
"그만 좀 해!",
|
| 127 |
+
"부정"
|
| 128 |
+
],
|
| 129 |
+
[
|
| 130 |
+
"내게 장난치지마!",
|
| 131 |
+
"부정"
|
| 132 |
+
],
|
| 133 |
+
[
|
| 134 |
+
"나 지금 너무 짜증나!",
|
| 135 |
+
"부정"
|
| 136 |
+
],
|
| 137 |
+
[
|
| 138 |
+
"나 지금 안 좋아!",
|
| 139 |
+
"부정"
|
| 140 |
+
],
|
| 141 |
+
[
|
| 142 |
+
"다가오지마!",
|
| 143 |
+
"부정"
|
| 144 |
+
],
|
| 145 |
+
[
|
| 146 |
+
"너에게 화난 거야!",
|
| 147 |
+
"부정"
|
| 148 |
+
],
|
| 149 |
+
[
|
| 150 |
+
"좀 멀리 가!",
|
| 151 |
+
"부정"
|
| 152 |
+
],
|
| 153 |
+
[
|
| 154 |
+
"나 싸우려고 준비됐어!",
|
| 155 |
+
"부정"
|
| 156 |
+
],
|
| 157 |
+
[
|
| 158 |
+
"한번 더 건드리면 물어버릴거야!!!",
|
| 159 |
+
"부정"
|
| 160 |
+
],
|
| 161 |
+
[
|
| 162 |
+
"나한테 이렇게 위협적으로 다가오지마!",
|
| 163 |
+
"부정"
|
| 164 |
+
],
|
| 165 |
+
[
|
| 166 |
+
"나의 영역을 침범하면 안돼! 이해해줘!",
|
| 167 |
+
"부정"
|
| 168 |
+
],
|
| 169 |
+
[
|
| 170 |
+
"그만 좀 귀찮게 해! 내가 분명히 경고했잖아!",
|
| 171 |
+
"부정"
|
| 172 |
+
],
|
| 173 |
+
[
|
| 174 |
+
"불편해, 물러서줘.",
|
| 175 |
+
"부정"
|
| 176 |
+
],
|
| 177 |
+
[
|
| 178 |
+
"경고하는 거야, 가까이 오지 마.",
|
| 179 |
+
"부정"
|
| 180 |
+
],
|
| 181 |
+
[
|
| 182 |
+
"좀 너무 가까워, 거리 좀 둬.",
|
| 183 |
+
"부정"
|
| 184 |
+
],
|
| 185 |
+
[
|
| 186 |
+
"나를 방해하지 마, 신경 써줘.",
|
| 187 |
+
"부정"
|
| 188 |
+
],
|
| 189 |
+
[
|
| 190 |
+
"내가 불편해, 거리 좀 두고 있어.",
|
| 191 |
+
"부정"
|
| 192 |
+
],
|
| 193 |
+
[
|
| 194 |
+
"가까이 오지 마.",
|
| 195 |
+
"부정"
|
| 196 |
+
],
|
| 197 |
+
[
|
| 198 |
+
"나를 방해하지 마, 존중해줘. Respect Me!!",
|
| 199 |
+
"부정"
|
| 200 |
+
]
|
| 201 |
+
],
|
| 202 |
+
"howl": [
|
| 203 |
+
[
|
| 204 |
+
"나 여기있어, 봐줘!",
|
| 205 |
+
"중립"
|
| 206 |
+
],
|
| 207 |
+
[
|
| 208 |
+
"너 어디 갔어?!",
|
| 209 |
+
"중립"
|
| 210 |
+
],
|
| 211 |
+
[
|
| 212 |
+
"나 너무 외로워!",
|
| 213 |
+
"중립"
|
| 214 |
+
],
|
| 215 |
+
[
|
| 216 |
+
"이리 와봐, 나 있는 곳으로!",
|
| 217 |
+
"중립"
|
| 218 |
+
],
|
| 219 |
+
[
|
| 220 |
+
"너 없으면 너무 심심해!",
|
| 221 |
+
"중립"
|
| 222 |
+
],
|
| 223 |
+
[
|
| 224 |
+
"나도 같이 가고 싶어!",
|
| 225 |
+
"중립"
|
| 226 |
+
],
|
| 227 |
+
[
|
| 228 |
+
"나 심심해",
|
| 229 |
+
"중립"
|
| 230 |
+
],
|
| 231 |
+
[
|
| 232 |
+
"어디야? 나 찾아봐!",
|
| 233 |
+
"중립"
|
| 234 |
+
],
|
| 235 |
+
[
|
| 236 |
+
"언제 오려고 그래?",
|
| 237 |
+
"중립"
|
| 238 |
+
],
|
| 239 |
+
[
|
| 240 |
+
"나는 여기 있는데!",
|
| 241 |
+
"중립"
|
| 242 |
+
],
|
| 243 |
+
[
|
| 244 |
+
"빨리 돌아와줘!",
|
| 245 |
+
"중립"
|
| 246 |
+
],
|
| 247 |
+
[
|
| 248 |
+
"나 혼자 남겨두지 마!",
|
| 249 |
+
"중립"
|
| 250 |
+
],
|
| 251 |
+
[
|
| 252 |
+
"나 여기있어!! 나좀 봐줘!!!",
|
| 253 |
+
"중립"
|
| 254 |
+
],
|
| 255 |
+
[
|
| 256 |
+
"나 잘 보고 있어? 나 괜찮아?",
|
| 257 |
+
"중립"
|
| 258 |
+
],
|
| 259 |
+
[
|
| 260 |
+
"주인, 나 좀 안아줄 수 있을까?",
|
| 261 |
+
"중립"
|
| 262 |
+
],
|
| 263 |
+
[
|
| 264 |
+
"외로워, 보고 싶어.",
|
| 265 |
+
"중립"
|
| 266 |
+
],
|
| 267 |
+
[
|
| 268 |
+
"다른 강아지와 '합창'하고 싶어.",
|
| 269 |
+
"중립"
|
| 270 |
+
],
|
| 271 |
+
[
|
| 272 |
+
"너를 보고싶어, 언제 와?",
|
| 273 |
+
"중립"
|
| 274 |
+
],
|
| 275 |
+
[
|
| 276 |
+
"무언가 알려고 하는 중이야.",
|
| 277 |
+
"중립"
|
| 278 |
+
],
|
| 279 |
+
[
|
| 280 |
+
"다른 강아지들이랑 노래하고 싶어.",
|
| 281 |
+
"긍정"
|
| 282 |
+
]
|
| 283 |
+
],
|
| 284 |
+
"panting": [
|
| 285 |
+
[
|
| 286 |
+
"더워~ 에어컨 켜줘.",
|
| 287 |
+
"부정"
|
| 288 |
+
],
|
| 289 |
+
[
|
| 290 |
+
"운동 후 휴식 중이야.",
|
| 291 |
+
"중립"
|
| 292 |
+
],
|
| 293 |
+
[
|
| 294 |
+
"숨이 차, 좀 도와줘.",
|
| 295 |
+
"부정"
|
| 296 |
+
],
|
| 297 |
+
[
|
| 298 |
+
"휴식이 필요해, 좀 쉬자.",
|
| 299 |
+
"부정"
|
| 300 |
+
],
|
| 301 |
+
[
|
| 302 |
+
"너무 더워, 물 좀 줄래?",
|
| 303 |
+
"부정"
|
| 304 |
+
],
|
| 305 |
+
[
|
| 306 |
+
"너무 더워, 바람 좀 쐬자.",
|
| 307 |
+
"부정"
|
| 308 |
+
],
|
| 309 |
+
[
|
| 310 |
+
"힘들게 운동했어, 휴식 좀!",
|
| 311 |
+
"부정"
|
| 312 |
+
],
|
| 313 |
+
[
|
| 314 |
+
"숨이 차, 쉬는 시간이 필요해.",
|
| 315 |
+
"부정"
|
| 316 |
+
],
|
| 317 |
+
[
|
| 318 |
+
"휴식이 필요해, 조용히 좀...",
|
| 319 |
+
"부정"
|
| 320 |
+
],
|
| 321 |
+
[
|
| 322 |
+
"물 좀 마시고 싶어, 줄래?",
|
| 323 |
+
"중립"
|
| 324 |
+
],
|
| 325 |
+
[
|
| 326 |
+
"많이 뛰어서 힘들어, 휴식이 필요해.",
|
| 327 |
+
"부정"
|
| 328 |
+
],
|
| 329 |
+
[
|
| 330 |
+
"휴식이 필요해, 좀 더 쉬자.",
|
| 331 |
+
"중립"
|
| 332 |
+
],
|
| 333 |
+
[
|
| 334 |
+
"너무 더워서 물 좀 마시고 싶어.",
|
| 335 |
+
"중립"
|
| 336 |
+
],
|
| 337 |
+
[
|
| 338 |
+
"좀 더운 �� 같아, 바람 좀 쐬고 싶어.",
|
| 339 |
+
"중립"
|
| 340 |
+
],
|
| 341 |
+
[
|
| 342 |
+
"지금 좀 쉴 시간이 필요해, 잠시만 기다려.",
|
| 343 |
+
"중립"
|
| 344 |
+
],
|
| 345 |
+
[
|
| 346 |
+
"지금 진정할 시간이 필요해!!!",
|
| 347 |
+
"중립"
|
| 348 |
+
],
|
| 349 |
+
[
|
| 350 |
+
"나 지금 너무 신나",
|
| 351 |
+
"긍정"
|
| 352 |
+
],
|
| 353 |
+
[
|
| 354 |
+
"너랑 놀면 더 재밌을 것 같아",
|
| 355 |
+
"긍정"
|
| 356 |
+
],
|
| 357 |
+
[
|
| 358 |
+
"나랑 놀지 않을래?",
|
| 359 |
+
"긍정"
|
| 360 |
+
],
|
| 361 |
+
[
|
| 362 |
+
"밖에 나가면 재미난 일이 있을 것 같아!",
|
| 363 |
+
"긍정"
|
| 364 |
+
],
|
| 365 |
+
[
|
| 366 |
+
"오늘은 무슨 일이 있을까? 좋은 일이 생길 것 같아!",
|
| 367 |
+
"긍정"
|
| 368 |
+
],
|
| 369 |
+
[
|
| 370 |
+
"세상 모든 것들이 반가워~",
|
| 371 |
+
"긍정"
|
| 372 |
+
],
|
| 373 |
+
[
|
| 374 |
+
"너랑 친해지고 싶어~",
|
| 375 |
+
"긍정"
|
| 376 |
+
],
|
| 377 |
+
[
|
| 378 |
+
"오늘 기분 아주 나이스~",
|
| 379 |
+
"긍정"
|
| 380 |
+
],
|
| 381 |
+
[
|
| 382 |
+
"세상에서 제일 좋아!!",
|
| 383 |
+
"긍정"
|
| 384 |
+
],
|
| 385 |
+
[
|
| 386 |
+
"나 지금 기분이가 좋아~",
|
| 387 |
+
"긍정"
|
| 388 |
+
],
|
| 389 |
+
[
|
| 390 |
+
"너랑 놀고싶어~",
|
| 391 |
+
"긍정"
|
| 392 |
+
],
|
| 393 |
+
[
|
| 394 |
+
"오늘 되게 행복한 하루다~",
|
| 395 |
+
"긍정"
|
| 396 |
+
],
|
| 397 |
+
[
|
| 398 |
+
"오늘 내 생일인가? 너무 행복해><",
|
| 399 |
+
"긍정"
|
| 400 |
+
],
|
| 401 |
+
[
|
| 402 |
+
"만나서 반가워",
|
| 403 |
+
"긍정"
|
| 404 |
+
],
|
| 405 |
+
[
|
| 406 |
+
"너는 이름이 뭐니?",
|
| 407 |
+
"긍정"
|
| 408 |
+
],
|
| 409 |
+
[
|
| 410 |
+
"난 너가 좋아!!",
|
| 411 |
+
"긍정"
|
| 412 |
+
],
|
| 413 |
+
[
|
| 414 |
+
"나 매우 재밌어",
|
| 415 |
+
"긍정"
|
| 416 |
+
],
|
| 417 |
+
[
|
| 418 |
+
"나랑 같이 놀러 나가자",
|
| 419 |
+
"긍정"
|
| 420 |
+
]
|
| 421 |
+
],
|
| 422 |
+
"whimper": [
|
| 423 |
+
[
|
| 424 |
+
"나 너무 두려워",
|
| 425 |
+
"부정"
|
| 426 |
+
],
|
| 427 |
+
[
|
| 428 |
+
"나 지금 너무 외로워",
|
| 429 |
+
"부정"
|
| 430 |
+
],
|
| 431 |
+
[
|
| 432 |
+
"나 너무 슬퍼",
|
| 433 |
+
"부정"
|
| 434 |
+
],
|
| 435 |
+
[
|
| 436 |
+
"나 좀 안아줘",
|
| 437 |
+
"부정"
|
| 438 |
+
],
|
| 439 |
+
[
|
| 440 |
+
"나 지금 너무 불편해",
|
| 441 |
+
"부정"
|
| 442 |
+
],
|
| 443 |
+
[
|
| 444 |
+
"나 너무 피곤해",
|
| 445 |
+
"부정"
|
| 446 |
+
],
|
| 447 |
+
[
|
| 448 |
+
"조금만 더 안아줘",
|
| 449 |
+
"부정"
|
| 450 |
+
],
|
| 451 |
+
[
|
| 452 |
+
"나 좀 위로해줘",
|
| 453 |
+
"부정"
|
| 454 |
+
],
|
| 455 |
+
[
|
| 456 |
+
"나 기다리는 중",
|
| 457 |
+
"부정"
|
| 458 |
+
],
|
| 459 |
+
[
|
| 460 |
+
"외로워서 눈물이 나",
|
| 461 |
+
"부정"
|
| 462 |
+
],
|
| 463 |
+
[
|
| 464 |
+
"나 상처받았어, 너무 두려워...ㅠㅡㅠ",
|
| 465 |
+
"부정"
|
| 466 |
+
],
|
| 467 |
+
[
|
| 468 |
+
"나 놀래쪄ㅠㅡㅠ 힝구힝구..",
|
| 469 |
+
"부정"
|
| 470 |
+
],
|
| 471 |
+
[
|
| 472 |
+
"무셔워... 안아죠~~~",
|
| 473 |
+
"부정"
|
| 474 |
+
],
|
| 475 |
+
[
|
| 476 |
+
"너무 슬퍼서 맘이 아파... 안아줘...",
|
| 477 |
+
"부정"
|
| 478 |
+
],
|
| 479 |
+
[
|
| 480 |
+
"나 기분이 너무 안 좋아... 어떻게 해줄래?",
|
| 481 |
+
"부정"
|
| 482 |
+
],
|
| 483 |
+
[
|
| 484 |
+
"힝...미안해...",
|
| 485 |
+
"부정"
|
| 486 |
+
],
|
| 487 |
+
[
|
| 488 |
+
"불안해, 곁에 있어줘.",
|
| 489 |
+
"부정"
|
| 490 |
+
],
|
| 491 |
+
[
|
| 492 |
+
"밖으로 나가고 싶어.",
|
| 493 |
+
"중립"
|
| 494 |
+
],
|
| 495 |
+
[
|
| 496 |
+
"미안해, 실수했어.",
|
| 497 |
+
"부정"
|
| 498 |
+
],
|
| 499 |
+
[
|
| 500 |
+
"너무 슬퍼, 위로 좀 해줘.",
|
| 501 |
+
"부정"
|
| 502 |
+
],
|
| 503 |
+
[
|
| 504 |
+
"스트레스 받았어, 도와줘.",
|
| 505 |
+
"부정"
|
| 506 |
+
],
|
| 507 |
+
[
|
| 508 |
+
"내가 불안해, 붙어있어줘.",
|
| 509 |
+
"부정"
|
| 510 |
+
],
|
| 511 |
+
[
|
| 512 |
+
"너무 외로워, 애정을 보여줘.",
|
| 513 |
+
"부정"
|
| 514 |
+
],
|
| 515 |
+
[
|
| 516 |
+
"산책 좀 가고 싶어.",
|
| 517 |
+
"중립"
|
| 518 |
+
],
|
| 519 |
+
[
|
| 520 |
+
"정말 슬퍼, 안아줘.",
|
| 521 |
+
"부정"
|
| 522 |
+
],
|
| 523 |
+
[
|
| 524 |
+
"스트레스가 너무 많아, 안아줘.",
|
| 525 |
+
"부정"
|
| 526 |
+
]
|
| 527 |
+
]
|
| 528 |
+
}
|
text_mapping_example.ipynb
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 13,
|
| 6 |
+
"id": "8f925fb7-86ba-487f-ab85-88754d777860",
|
| 7 |
+
"metadata": {
|
| 8 |
+
"tags": []
|
| 9 |
+
},
|
| 10 |
+
"outputs": [],
|
| 11 |
+
"source": [
|
| 12 |
+
"import json\n",
|
| 13 |
+
"with open(\"text/text_label.json\",\"r\",encoding='utf-8') as f:\n",
|
| 14 |
+
" text_label = json.load(f)"
|
| 15 |
+
]
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"cell_type": "code",
|
| 19 |
+
"execution_count": 14,
|
| 20 |
+
"id": "d2c0a048-1db7-4236-9f26-539ed31d3d27",
|
| 21 |
+
"metadata": {
|
| 22 |
+
"tags": []
|
| 23 |
+
},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"import random\n",
|
| 27 |
+
"random.seed(0)\n",
|
| 28 |
+
"def post_process(model_output,text_label):\n",
|
| 29 |
+
" text_list = text_label[model_output]\n",
|
| 30 |
+
" text,sent = random.sample(text_list,1)[0]\n",
|
| 31 |
+
" return {'label' : model_output,\n",
|
| 32 |
+
" 'text' : text,\n",
|
| 33 |
+
" 'sentiment' : sent}"
|
| 34 |
+
]
|
| 35 |
+
},
|
| 36 |
+
{
|
| 37 |
+
"cell_type": "code",
|
| 38 |
+
"execution_count": 15,
|
| 39 |
+
"id": "f8ca0ad8-bc0c-4766-8e13-fe093c5290df",
|
| 40 |
+
"metadata": {
|
| 41 |
+
"tags": []
|
| 42 |
+
},
|
| 43 |
+
"outputs": [
|
| 44 |
+
{
|
| 45 |
+
"data": {
|
| 46 |
+
"text/plain": [
|
| 47 |
+
"{'label': 'bark', 'text': '아니야, 아니야!', 'sentiment': '부정'}"
|
| 48 |
+
]
|
| 49 |
+
},
|
| 50 |
+
"execution_count": 15,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"output_type": "execute_result"
|
| 53 |
+
}
|
| 54 |
+
],
|
| 55 |
+
"source": [
|
| 56 |
+
"model_output = 'bark'\n",
|
| 57 |
+
"post_process(model_output,text_label)"
|
| 58 |
+
]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"cell_type": "code",
|
| 62 |
+
"execution_count": null,
|
| 63 |
+
"id": "da690a64-4dea-4b2a-89c1-23ea8bad955c",
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"outputs": [],
|
| 66 |
+
"source": []
|
| 67 |
+
}
|
| 68 |
+
],
|
| 69 |
+
"metadata": {
|
| 70 |
+
"kernelspec": {
|
| 71 |
+
"display_name": "Python 3 (ipykernel)",
|
| 72 |
+
"language": "python",
|
| 73 |
+
"name": "python3"
|
| 74 |
+
},
|
| 75 |
+
"language_info": {
|
| 76 |
+
"codemirror_mode": {
|
| 77 |
+
"name": "ipython",
|
| 78 |
+
"version": 3
|
| 79 |
+
},
|
| 80 |
+
"file_extension": ".py",
|
| 81 |
+
"mimetype": "text/x-python",
|
| 82 |
+
"name": "python",
|
| 83 |
+
"nbconvert_exporter": "python",
|
| 84 |
+
"pygments_lexer": "ipython3",
|
| 85 |
+
"version": "3.8.16"
|
| 86 |
+
}
|
| 87 |
+
},
|
| 88 |
+
"nbformat": 4,
|
| 89 |
+
"nbformat_minor": 5
|
| 90 |
+
}
|