File size: 14,732 Bytes
fb8dafa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
[![License](https://img.shields.io/badge/Code_License-Modified_MIT-blue.svg)](LICENSE)
[![License](https://img.shields.io/badge/Weights_License-DeepFloyd_IF-orange.svg)](LICENSE-MODEL)
[![Downloads](https://pepy.tech/badge/deepfloyd_if)](https://pepy.tech/project/deepfloyd_if)

# IF by DeepFloyd Lab at [StabilityAI](https://stability.ai/)

<p align="center">
  <img src="./pics/nabla.jpg" width="100%">
</p>

We introduce DeepFloyd IF, a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding. DeepFloyd IF is a modular composed of a frozen text encoder and three cascaded pixel diffusion modules: a base model that generates 64x64 px image based on text prompt and two super-resolution models, each designed to generate images of increasing resolution: 256x256 px and 1024x1024 px. All stages of the model utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention pooling. The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID score of 6.66 on the COCO dataset. Our work underscores the potential of larger UNet architectures in the first stage of cascaded diffusion models and depicts a promising future for text-to-image synthesis.

<p align="center">
  <img src="./pics/deepfloyd_if_scheme.jpg" width="100%">
</p>

*Inspired by* [*Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding*](https://arxiv.org/pdf/2205.11487.pdf)

## Minimum requirements to use all IF models:
- 16GB vRAM for IF-I-XL (4.3B text to 64x64 base module) & IF-II-L (1.2B to 256x256 upscaler module)
- 24GB vRAM for IF-I-XL (4.3B text to 64x64 base module) & IF-II-L (1.2B to 256x256 upscaler module) & Stable x4 (to 1024x1024 upscaler)
- `xformers` and set env variable `FORCE_MEM_EFFICIENT_ATTN=1`


## Quick Start
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/deepfloyd_if_free_tier_google_colab.ipynb)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/DeepFloyd/IF)

```shell
pip install deepfloyd_if==1.0.1
pip install xformers==0.0.16
pip install git+https://github.com/openai/CLIP.git --no-deps
```

## Local notebooks
[![Jupyter Notebook](https://img.shields.io/badge/jupyter_notebook-%23FF7A01.svg?logo=jupyter&logoColor=white)](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0/blob/main/notebooks/pipes-DeepFloyd-IF-v1.0.ipynb)
[![Kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://www.kaggle.com/code/shonenkov/deepfloyd-if-4-3b-generator-of-pictures)

The Dream, Style Transfer, Super Resolution or Inpainting modes are avaliable in a Jupyter Notebook [here](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0/blob/main/notebooks/pipes-DeepFloyd-IF-v1.0.ipynb).



## Integration with ๐Ÿค— Diffusers

IF is also integrated with the ๐Ÿค— Hugging Face [Diffusers library](https://github.com/huggingface/diffusers/).

Diffusers runs each stage individually allowing the user to customize the image generation process as well as allowing to inspect intermediate results easily.

### Example

Before you can use IF, you need to accept its usage conditions. To do so:
1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be loggin in
2. Accept the license on the model card of [DeepFloyd/IF-I-XL-v1.0](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)
3. Make sure to login locally. Install `huggingface_hub`
```sh
pip install huggingface_hub --upgrade
```

run the login function in a Python shell

```py
from huggingface_hub import login

login()
```

and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens).

Next we install `diffusers` and dependencies:

```sh
pip install diffusers accelerate transformers safetensors
```

And we can now run the model locally.

By default `diffusers` makes use of [model cpu offloading](https://huggingface.co/docs/diffusers/optimization/fp16#model-offloading-for-fast-inference-and-memory-savings) to run the whole IF pipeline with as little as 14 GB of VRAM.

If you are using `torch>=2.0.0`, make sure to **delete all** `enable_xformers_memory_efficient_attention()`
functions.

```py
from diffusers import DiffusionPipeline
from diffusers.utils import pt_to_pil
import torch

# stage 1
stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16)
stage_1.enable_xformers_memory_efficient_attention()  # remove line if torch.__version__ >= 2.0.0
stage_1.enable_model_cpu_offload()

# stage 2
stage_2 = DiffusionPipeline.from_pretrained(
    "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16
)
stage_2.enable_xformers_memory_efficient_attention()  # remove line if torch.__version__ >= 2.0.0
stage_2.enable_model_cpu_offload()

# stage 3
safety_modules = {"feature_extractor": stage_1.feature_extractor, "safety_checker": stage_1.safety_checker, "watermarker": stage_1.watermarker}
stage_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16)
stage_3.enable_xformers_memory_efficient_attention()  # remove line if torch.__version__ >= 2.0.0
stage_3.enable_model_cpu_offload()

prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"'

# text embeds
prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt)

generator = torch.manual_seed(0)

# stage 1
image = stage_1(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt").images
pt_to_pil(image)[0].save("./if_stage_I.png")

# stage 2
image = stage_2(
    image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt"
).images
pt_to_pil(image)[0].save("./if_stage_II.png")

# stage 3
image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images
image[0].save("./if_stage_III.png")
```

 There are multiple ways to speed up the inference time and lower the memory consumption even more with `diffusers`. To do so, please have a look at the Diffusers docs:

- ๐Ÿš€ [Optimizing for inference time](https://huggingface.co/docs/diffusers/api/pipelines/if#optimizing-for-speed)
- โš™๏ธ [Optimizing for low memory during inference](https://huggingface.co/docs/diffusers/api/pipelines/if#optimizing-for-memory)

For more in-detail information about how to use IF, please have a look at [the IF blog post](https://huggingface.co/blog/if) and [the documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/if) ๐Ÿ“–.

## Run the code locally

### Loading the models into VRAM

```python
from deepfloyd_if.modules import IFStageI, IFStageII, StableStageIII
from deepfloyd_if.modules.t5 import T5Embedder

device = 'cuda:0'
if_I = IFStageI('IF-I-XL-v1.0', device=device)
if_II = IFStageII('IF-II-L-v1.0', device=device)
if_III = StableStageIII('stable-diffusion-x4-upscaler', device=device)
t5 = T5Embedder(device="cpu")
```

### I. Dream
Dream is the text-to-image mode of the IF model

```python
from deepfloyd_if.pipelines import dream

prompt = 'ultra close-up color photo portrait of rainbow owl with deer horns in the woods'
count = 4

result = dream(
    t5=t5, if_I=if_I, if_II=if_II, if_III=if_III,
    prompt=[prompt]*count,
    seed=42,
    if_I_kwargs={
        "guidance_scale": 7.0,
        "sample_timestep_respacing": "smart100",
    },
    if_II_kwargs={
        "guidance_scale": 4.0,
        "sample_timestep_respacing": "smart50",
    },
    if_III_kwargs={
        "guidance_scale": 9.0,
        "noise_level": 20,
        "sample_timestep_respacing": "75",
    },
)

if_III.show(result['III'], size=14)
```
![](./pics/dream-III.jpg)

## II. Zero-shot Image-to-Image Translation

![](./pics/img_to_img_scheme.jpeg)

In Style Transfer mode, the output of your prompt comes out at the style of the `support_pil_img`
```python
from deepfloyd_if.pipelines import style_transfer

result = style_transfer(
    t5=t5, if_I=if_I, if_II=if_II,
    support_pil_img=raw_pil_image,
    style_prompt=[
        'in style of professional origami',
        'in style of oil art, Tate modern',
        'in style of plastic building bricks',
        'in style of classic anime from 1990',
    ],
    seed=42,
    if_I_kwargs={
        "guidance_scale": 10.0,
        "sample_timestep_respacing": "10,10,10,10,10,10,10,10,0,0",
        'support_noise_less_qsample_steps': 5,
    },
    if_II_kwargs={
        "guidance_scale": 4.0,
        "sample_timestep_respacing": 'smart50',
        "support_noise_less_qsample_steps": 5,
    },
)
if_I.show(result['II'], 1, 20)
```

![Alternative Text](./pics/deep_floyd_if_image_2_image.gif)


## III. Super Resolution
For super-resolution, users can run `IF-II` and `IF-III` or 'Stable x4' on an image that was not necessarely generated by IF (two cascades):

```python
from deepfloyd_if.pipelines import super_resolution

middle_res = super_resolution(
    t5,
    if_III=if_II,
    prompt=['woman with a blue headscarf and a blue sweaterp, detailed picture, 4k dslr, best quality'],
    support_pil_img=raw_pil_image,
    img_scale=4.,
    img_size=64,
    if_III_kwargs={
        'sample_timestep_respacing': 'smart100',
        'aug_level': 0.5,
        'guidance_scale': 6.0,
    },
)
high_res = super_resolution(
    t5,
    if_III=if_III,
    prompt=[''],
    support_pil_img=middle_res['III'][0],
    img_scale=4.,
    img_size=256,
    if_III_kwargs={
        "guidance_scale": 9.0,
        "noise_level": 20,
        "sample_timestep_respacing": "75",
    },
)
show_superres(raw_pil_image, high_res['III'][0])
```

![](./pics/if_as_upscaler.jpg)


### IV. Zero-shot Inpainting

```python
from deepfloyd_if.pipelines import inpainting

result = inpainting(
    t5=t5, if_I=if_I,
    if_II=if_II,
    if_III=if_III,
    support_pil_img=raw_pil_image,
    inpainting_mask=inpainting_mask,
    prompt=[
        'oil art, a man in a hat',
    ],
    seed=42,
    if_I_kwargs={
        "guidance_scale": 7.0,
        "sample_timestep_respacing": "10,10,10,10,10,0,0,0,0,0",
        'support_noise_less_qsample_steps': 0,
    },
    if_II_kwargs={
        "guidance_scale": 4.0,
        'aug_level': 0.0,
        "sample_timestep_respacing": '100',
    },
    if_III_kwargs={
        "guidance_scale": 9.0,
        "noise_level": 20,
        "sample_timestep_respacing": "75",
    },
)
if_I.show(result['I'], 2, 3)
if_I.show(result['II'], 2, 6)
if_I.show(result['III'], 2, 14)
```
![](./pics/deep_floyd_if_inpainting.gif)

### ๐Ÿค— Model Zoo ๐Ÿค—
The link to download the weights as well as the model cards will be available soon on each model of the model zoo

#### Original

| Name                                                      | Cascade | Params | FID  | Batch size | Steps |
|:----------------------------------------------------------|:-------:|:------:|:----:|:----------:|:-----:|
| [IF-I-M](https://huggingface.co/DeepFloyd/IF-I-M-v1.0)    |    I    |  400M  | 8.86 |    3072    | 2.5M  |
| [IF-I-L](https://huggingface.co/DeepFloyd/IF-I-L-v1.0)    |    I    |  900M  | 8.06 |    3200    | 3.0M  |
| [IF-I-XL](https://huggingface.co/DeepFloyd/IF-I-XL-v1.0)* |    I    |  4.3B  | 6.66 |    3072    | 2.42M |
| [IF-II-M](https://huggingface.co/DeepFloyd/IF-II-M-v1.0)  |   II    |  450M  |  -   |    1536    | 2.5M  |
| [IF-II-L](https://huggingface.co/DeepFloyd/IF-II-L-v1.0)* |   II    |  1.2B  |  -   |    1536    | 2.5M  |
| IF-III-L* _(soon)_                                        |   III   |  700M  |  -   |    3072    | 1.25M |

 *best modules

### Quantitative Evaluation

`FID = 6.66`

![](./pics/fid30k_if.jpg)

## License

The code in this repository is released under the bespoke license (see added [point two](https://github.com/deep-floyd/IF/blob/main/LICENSE#L13)).

The weights will be available soon via [the DeepFloyd organization at Hugging Face](https://huggingface.co/DeepFloyd) and have their own LICENSE.

**Disclaimer:** *The initial release of the IF model is under a restricted research-purposes-only license temporarily to gather feedback, and after that we intend to release a fully open-source model in line with other Stability AI models.*

## Limitations and Biases

The models available in this codebase have known limitations and biases. Please refer to [the model card](https://huggingface.co/DeepFloyd/IF-I-L-v1.0) for more information.


## ๐ŸŽ“ DeepFloyd IF creators:
- [Alex Shonenkov](https://github.com/shonenkov)
- [Misha Konstantinov](https://github.com/zeroshot-ai)
- [Daria Bakshandaeva](https://github.com/Gugutse)
- [Christoph Schuhmann](https://github.com/christophschuhmann)
- [Ksenia Ivanova](https://github.com/ivksu)
- [Nadiia Klokova](https://github.com/vauimpuls)

## ๐Ÿ“„ Research Paper (Soon)

## Acknowledgements

Special thanks to [StabilityAI](http://stability.ai) and its CEO [Emad Mostaque](https://twitter.com/emostaque) for invaluable support, providing GPU compute and infrastructure to train the models (our gratitude goes to [Richard Vencu](https://github.com/rvencu)); thanks to [LAION](https://laion.ai) and [Christoph Schuhmann](https://github.com/christophschuhmann) in particular for contribution to the project and well-prepared datasets; thanks to [Huggingface](https://huggingface.co) teams for optimizing models' speed and memory consumption during inference, creating demos and giving cool advice!

## ๐Ÿš€ External Contributors ๐Ÿš€
- The Biggest Thanks [@Apolinรกrio](https://github.com/apolinario), for ideas, consultations, help and support on all stages to make IF available in open-source; for writing a lot of documentation and instructions; for creating a friendly atmosphere in difficult moments ๐Ÿฆ‰;
- Thanks, [@patrickvonplaten](https://github.com/patrickvonplaten), for improving loading time of unet models by 80%;
for integration Stable-Diffusion-x4 as native pipeline ๐Ÿ’ช;
- Thanks, [@williamberman](https://github.com/williamberman) and [@patrickvonplaten](https://github.com/patrickvonplaten) for diffusers integration ๐Ÿ™Œ;
- Thanks, [@hysts](https://github.com/hysts) and [@Apolinรกrio](https://github.com/apolinario) for creating [the best gradio demo with IF](https://huggingface.co/spaces/DeepFloyd/IF) ๐Ÿš€;
- Thanks, [@Dango233](https://github.com/Dango233), for adapting IF with xformers memory efficient attention ๐Ÿ’ช;