Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- .gitattributes +2 -0
- dehazing_gen.py +86 -0
- genC.pth.tar +3 -0
- gradio_check1.png +3 -0
- gradio_check10.png +0 -0
- gradio_check13.png +3 -0
- gradio_check5.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
gradio_check1.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
gradio_check13.png filter=lfs diff=lfs merge=lfs -text
|
dehazing_gen.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ConvBlock(nn.Module):
|
| 6 |
+
def __init__(self, in_channels: int, out_channels: int, downsample: bool = True, use_act: bool = True,
|
| 7 |
+
use_dropout: bool = False, **kwargs):
|
| 8 |
+
super(ConvBlock, self).__init__()
|
| 9 |
+
|
| 10 |
+
self.conv_block = nn.Sequential(
|
| 11 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels, padding_mode="reflect", **kwargs)
|
| 12 |
+
|
| 13 |
+
if downsample
|
| 14 |
+
else nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, **kwargs),
|
| 15 |
+
|
| 16 |
+
nn.InstanceNorm2d(num_features=out_channels),
|
| 17 |
+
nn.ReLU(inplace=True) if use_act else nn.Identity()
|
| 18 |
+
)
|
| 19 |
+
if use_dropout:
|
| 20 |
+
self.conv_block = nn.Sequential(self.conv_block, nn.Dropout(p=0.5))
|
| 21 |
+
|
| 22 |
+
def forward(self, x):
|
| 23 |
+
return self.conv_block(x)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class ResidualBlock(nn.Module):
|
| 27 |
+
def __init__(self, features: int):
|
| 28 |
+
super(ResidualBlock, self).__init__()
|
| 29 |
+
self.residual_block = nn.Sequential(
|
| 30 |
+
ConvBlock(in_channels=features, out_channels=features, kernel_size=3, padding=1),
|
| 31 |
+
ConvBlock(in_channels=features, out_channels=features, kernel_size=3, padding=1, use_act=False),
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
def forward(self, x):
|
| 35 |
+
return x + self.residual_block(x)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class CycleGenerator(nn.Module):
|
| 39 |
+
def __init__(self, img_channels: int = 3, latent_dim: int = 64, num_residuals: int = 9):
|
| 40 |
+
super(CycleGenerator, self).__init__()
|
| 41 |
+
|
| 42 |
+
self.base = nn.Sequential(
|
| 43 |
+
nn.Conv2d(in_channels=img_channels, out_channels=latent_dim, kernel_size=7, stride=1, padding=3,
|
| 44 |
+
padding_mode="reflect"),
|
| 45 |
+
nn.ReLU(inplace=True)
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.down_blocks = nn.ModuleList(
|
| 49 |
+
[
|
| 50 |
+
ConvBlock(in_channels=latent_dim, out_channels=latent_dim * 2, kernel_size=3, stride=2, padding=1),
|
| 51 |
+
ConvBlock(in_channels=latent_dim * 2, out_channels=latent_dim * 4, kernel_size=3, stride=2, padding=1),
|
| 52 |
+
]
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
self.residual_blocks = nn.Sequential(
|
| 56 |
+
*[ResidualBlock(features=latent_dim * 4) for _ in range(num_residuals)]
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
self.up_blocks = nn.ModuleList(
|
| 60 |
+
[
|
| 61 |
+
ConvBlock(in_channels=latent_dim * 4, out_channels=latent_dim * 2, kernel_size=3, stride=2, padding=1,
|
| 62 |
+
output_padding=1,
|
| 63 |
+
downsample=False),
|
| 64 |
+
ConvBlock(in_channels=latent_dim * 2, out_channels=latent_dim, kernel_size=3, stride=2, padding=1,
|
| 65 |
+
output_padding=1,
|
| 66 |
+
downsample=False),
|
| 67 |
+
]
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
self.head = nn.Conv2d(in_channels=latent_dim, out_channels=img_channels, kernel_size=7, stride=1, padding=3,
|
| 71 |
+
padding_mode="reflect")
|
| 72 |
+
|
| 73 |
+
def forward(self, x):
|
| 74 |
+
x = self.base(x)
|
| 75 |
+
|
| 76 |
+
for layer in self.down_blocks:
|
| 77 |
+
x = layer(x)
|
| 78 |
+
|
| 79 |
+
x = self.residual_blocks(x)
|
| 80 |
+
|
| 81 |
+
for layer in self.up_blocks:
|
| 82 |
+
x = layer(x)
|
| 83 |
+
|
| 84 |
+
x = self.head(x)
|
| 85 |
+
|
| 86 |
+
return torch.tanh(x)
|
genC.pth.tar
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83c998de8c48e350a93fd204db7bf56739b7fd1e068a8bc73e80baf326c3ea30
|
| 3 |
+
size 156833914
|
gradio_check1.png
ADDED
|
Git LFS Details
|
gradio_check10.png
ADDED
|
gradio_check13.png
ADDED
|
Git LFS Details
|
gradio_check5.png
ADDED
|