Spaces:
Running
on
Zero
Running
on
Zero
John Ho
commited on
Commit
·
f18bd0f
1
Parent(s):
bd916de
testing more efficient model loading
Browse files
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.32.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
short_description:
|
| 11 |
---
|
| 12 |
|
| 13 |
# The HuggingFace Space Template
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Camera Motion Detection
|
| 3 |
+
emoji: 📸
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: yellow
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.32.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
short_description: Demo of the camera motion detection as part of CameraBench
|
| 11 |
---
|
| 12 |
|
| 13 |
# The HuggingFace Space Template
|
app.py
CHANGED
|
@@ -20,10 +20,16 @@ subprocess.run(
|
|
| 20 |
)
|
| 21 |
# --- now we got Flash Attention ---#
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
DTYPE =
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
logger.info(f"Device: {DEVICE}, dtype: {DTYPE}")
|
| 28 |
|
| 29 |
|
|
@@ -60,9 +66,20 @@ def load_model(
|
|
| 60 |
device_map=DEVICE,
|
| 61 |
)
|
| 62 |
)
|
|
|
|
|
|
|
| 63 |
return model
|
| 64 |
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
@spaces.GPU(duration=120)
|
| 67 |
def inference(
|
| 68 |
video_path: str,
|
|
@@ -70,13 +87,10 @@ def inference(
|
|
| 70 |
use_flash_attention: bool = True,
|
| 71 |
):
|
| 72 |
# default processor
|
| 73 |
-
processor =
|
| 74 |
-
"Qwen/Qwen2.5-VL-7B-Instruct",
|
| 75 |
-
device_map=DEVICE,
|
| 76 |
-
use_fast=True,
|
| 77 |
-
torch_dtype=DTYPE,
|
| 78 |
-
)
|
| 79 |
model = load_model(use_flash_attention=use_flash_attention)
|
|
|
|
|
|
|
| 80 |
fps = get_fps_ffmpeg(video_path)
|
| 81 |
logger.info(f"{os.path.basename(video_path)} FPS: {fps}")
|
| 82 |
messages = [
|
|
@@ -99,28 +113,30 @@ def inference(
|
|
| 99 |
image_inputs, video_inputs, video_kwargs = process_vision_info(
|
| 100 |
messages, return_video_kwargs=True
|
| 101 |
)
|
| 102 |
-
inputs = processor(
|
| 103 |
-
text=[text],
|
| 104 |
-
images=image_inputs,
|
| 105 |
-
videos=video_inputs,
|
| 106 |
-
# fps=fps,
|
| 107 |
-
padding=True,
|
| 108 |
-
return_tensors="pt",
|
| 109 |
-
**video_kwargs,
|
| 110 |
-
)
|
| 111 |
-
inputs = inputs.to(DEVICE)
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
return output_text
|
| 125 |
|
| 126 |
|
|
|
|
| 20 |
)
|
| 21 |
# --- now we got Flash Attention ---#
|
| 22 |
|
| 23 |
+
# Set target DEVICE and DTYPE
|
| 24 |
+
# For maximum memory efficiency, use bfloat16 if your GPU supports it, otherwise float16.
|
| 25 |
+
DTYPE = (
|
| 26 |
+
torch.bfloat16
|
| 27 |
+
if torch.cuda.is_available() and torch.cuda.is_bfloat16_supported()
|
| 28 |
+
else torch.float16
|
| 29 |
+
)
|
| 30 |
+
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 31 |
+
# Use "auto" to let accelerate handle device placement (GPU, CPU, disk)
|
| 32 |
+
DEVICE = "auto"
|
| 33 |
logger.info(f"Device: {DEVICE}, dtype: {DTYPE}")
|
| 34 |
|
| 35 |
|
|
|
|
| 66 |
device_map=DEVICE,
|
| 67 |
)
|
| 68 |
)
|
| 69 |
+
# Set model to evaluation mode for inference (disables dropout, etc.)
|
| 70 |
+
model.eval()
|
| 71 |
return model
|
| 72 |
|
| 73 |
|
| 74 |
+
def load_processor(model_name="Qwen/Qwen2.5-VL-7B-Instruct"):
|
| 75 |
+
return AutoProcessor.from_pretrained(
|
| 76 |
+
model_name,
|
| 77 |
+
device_map=DEVICE,
|
| 78 |
+
use_fast=True,
|
| 79 |
+
torch_dtype=DTYPE,
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
@spaces.GPU(duration=120)
|
| 84 |
def inference(
|
| 85 |
video_path: str,
|
|
|
|
| 87 |
use_flash_attention: bool = True,
|
| 88 |
):
|
| 89 |
# default processor
|
| 90 |
+
processor = load_processor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
model = load_model(use_flash_attention=use_flash_attention)
|
| 92 |
+
|
| 93 |
+
# The model is trained on 8.0 FPS which we recommend for optimal inference
|
| 94 |
fps = get_fps_ffmpeg(video_path)
|
| 95 |
logger.info(f"{os.path.basename(video_path)} FPS: {fps}")
|
| 96 |
messages = [
|
|
|
|
| 113 |
image_inputs, video_inputs, video_kwargs = process_vision_info(
|
| 114 |
messages, return_video_kwargs=True
|
| 115 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
with torch.no_grad():
|
| 118 |
+
inputs = processor(
|
| 119 |
+
text=[text],
|
| 120 |
+
images=image_inputs,
|
| 121 |
+
videos=video_inputs,
|
| 122 |
+
# fps=fps,
|
| 123 |
+
padding=True,
|
| 124 |
+
return_tensors="pt",
|
| 125 |
+
**video_kwargs,
|
| 126 |
+
)
|
| 127 |
+
# inputs = inputs.to(DEVICE)
|
| 128 |
+
|
| 129 |
+
# Inference
|
| 130 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
| 131 |
+
generated_ids_trimmed = [
|
| 132 |
+
out_ids[len(in_ids) :]
|
| 133 |
+
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 134 |
+
]
|
| 135 |
+
output_text = processor.batch_decode(
|
| 136 |
+
generated_ids_trimmed,
|
| 137 |
+
skip_special_tokens=True,
|
| 138 |
+
clean_up_tokenization_spaces=False,
|
| 139 |
+
)
|
| 140 |
return output_text
|
| 141 |
|
| 142 |
|