sam2 / samv2_handler.py
John Ho
removed visualization for debugging
07c2352
raw
history blame
9.2 kB
import os, shutil
import numpy as np
from PIL import Image
from typing import Literal, Any, Union, Generic, List
from pydantic import BaseModel
from sam2.build_sam import build_sam2, build_sam2_video_predictor
from sam2.sam2_image_predictor import SAM2ImagePredictor
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
from sam2.utils.misc import variant_to_config_mapping
from sam2.utils.visualization import show_masks
from ffmpeg_extractor import extract_frames, logger
from visualizer import mask_to_xyxy
from toolbox.vid_utils import VidInfo, VidReader
from toolbox.mask_encoding import b64_mask_encode
# from toolbox.img_utils import get_pil_im
variant_checkpoints_mapping = {
"tiny": "checkpoints/sam2_hiera_tiny.pt",
"small": "checkpoints/sam2_hiera_small.pt",
"base_plus": "checkpoints/sam2_hiera_base_plus.pt",
"large": "checkpoints/sam2_hiera_large.pt",
}
class bbox_xyxy(BaseModel):
x0: Union[int, float]
y0: Union[int, float]
x1: Union[int, float]
y1: Union[int, float]
class point_xy(BaseModel):
x: Union[int, float]
y: Union[int, float]
def load_sam_image_model(
# variant: Literal[*variant_checkpoints_mapping.keys()],
variant: Literal["tiny", "small", "base_plus", "large"],
device: str = "cpu",
auto_mask_gen: bool = False,
) -> SAM2ImagePredictor:
model = build_sam2(
config_file=variant_to_config_mapping[variant],
ckpt_path=variant_checkpoints_mapping[variant],
device=device,
)
return (
SAM2AutomaticMaskGenerator(model)
if auto_mask_gen
else SAM2ImagePredictor(sam_model=model)
)
def load_sam_video_model(
variant: Literal["tiny", "small", "base_plus", "large"] = "small",
device: str = "cpu",
) -> Any:
return build_sam2_video_predictor(
config_file=variant_to_config_mapping[variant],
ckpt_path=variant_checkpoints_mapping[variant],
device=device,
)
def run_sam_im_inference(
model: Any,
image: Image.Image,
points: Union[List[point_xy], List[dict]] = [],
point_labels: List[int] = [],
bboxes: Union[List[bbox_xyxy], List[dict]] = [],
get_pil_mask: bool = False,
b64_encode_mask: bool = False,
):
"""returns a list of np masks, each with the shape (h,w) and dtype uint8"""
assert (
points or bboxes
), f"SAM2 Image Inference must have either bounding boxes or points. Neither were provided."
if points:
assert len(points) == len(
point_labels
), f"{len(points)} points provided but {len(point_labels)} labels given."
# multimask_output actually will provide 3 masks for each segmentation (see https://github.com/facebookresearch/sam2/blob/main/notebooks/image_predictor_example.ipynb)
# so should also be set to False
has_multi = False
if points and bboxes:
has_multi = True
elif points and len(list(set(point_labels))) > 1:
has_multi = True
elif bboxes and len(bboxes) > 1:
has_multi = True
# parse provided bboxes
bboxes = (
[bbox_xyxy(**bbox) if isinstance(bbox, dict) else bbox for bbox in bboxes]
if bboxes
else []
)
points = (
[point_xy(**p) if isinstance(p, dict) else p for p in points] if points else []
)
# setup inference
image = np.array(image.convert("RGB"))
model.set_image(image)
box_coords = (
np.array([[b.x0, b.y0, b.x1, b.y1] for b in bboxes]) if bboxes else None
)
point_coords = np.array([[p.x, p.y] for p in points]) if points else None
point_labels = np.array(point_labels) if point_labels else None
masks, scores, _ = model.predict(
box=box_coords,
point_coords=point_coords,
point_labels=point_labels,
multimask_output=False, # has_multi,
)
# mask here is of shape (X, h, w) of np array, X = number of masks
if get_pil_mask:
return show_masks(image, masks, scores=None, display_image=False)
else:
output_masks = []
for i, mask in enumerate(masks):
if mask.ndim > 2: # shape (1, h, w)
# logger.debug(f"found mask of shape {mask.shape}")
output_masks.append(mask.squeeze().astype(np.uint8))
# when multimask_output = True the mask is shape (3,h,w)
# mask = np.transpose(mask, (1, 2, 0)) # shape (h,w,3)
# mask = Image.fromarray((mask * 255).astype(np.uint8)).convert("L")
# output_masks.append(np.array(mask))
else:
# logger.debug(f"found mask of shape {mask.shape}")
output_masks.append(mask.squeeze().astype(np.uint8))
return (
[b64_mask_encode(m).decode("ascii") for m in output_masks]
if b64_encode_mask
else output_masks
)
def unpack_masks(
masks_generator,
frame_wh: tuple,
drop_mask: bool = False,
):
"""return a list of detections in Miro's format given a SAM2 mask generator"""
w, h = frame_wh
detections = []
for frame_idx, tracker_ids, mask_logits in masks_generator:
masks = (mask_logits > 0.0).cpu().numpy().astype(np.uint8)
# draw a couple frames for debug purpose
# if frame_idx % 15 == 0:
# ann_masks = [m.squeeze() for m in masks if mask_to_xyxy(m.squeeze())]
# if len(ann_masks) > 0:
# annotate_masks(
# get_pil_im(np.array(vr.get_data(frame_idx))),
# masks=ann_masks,
# ).save(os.path.join(vframes_dir, f"{frame_idx}.png"))
for id, mask in zip(tracker_ids, masks):
mask = mask.squeeze().astype(np.uint8)
xyxy = mask_to_xyxy(mask)
if not xyxy: # mask is empty
# logger.debug(f"track_id {id} is missing mask at frame {frame_idx}")
continue
x0, y0, x1, y1 = xyxy
det = { # miro's detections format for videos
"frame": frame_idx,
"track_id": id,
"x": x0 / w,
"y": y0 / h,
"w": (x1 - x0) / w,
"h": (y1 - y0) / h,
"conf": 1,
}
if not drop_mask:
det["mask_b64"] = b64_mask_encode(mask).decode("ascii")
detections.append(det)
return detections
def run_sam_video_inference(
model: Any,
video_path: str,
masks: np.ndarray,
device: str = "cpu",
sample_fps: int = None,
every_x: int = None,
do_tidy_up: bool = False,
drop_mask: bool = True,
async_frame_load: bool = False,
ref_frame_idx: int = 0,
):
# put video frames into directory
# TODO:
# change frame size
l_frames_fp = extract_frames(
video_path,
fps=sample_fps,
every_x=every_x,
overwrite=True,
im_name_pattern="%05d.jpg",
)
vframes_dir = os.path.dirname(l_frames_fp[0])
vinfo = VidInfo(video_path)
vr = VidReader(video_path, use_imageio=True)
w = vinfo["frame_width"]
h = vinfo["frame_height"]
inference_state = model.init_state(
video_path=vframes_dir, device=device, async_loading_frames=async_frame_load
)
for mask_idx, mask in enumerate(masks):
_, object_ids, mask_logits = model.add_new_mask(
inference_state=inference_state,
frame_idx=ref_frame_idx,
obj_id=mask_idx,
mask=mask,
)
# debug
logger.debug(
f"adding mask {mask_idx} of shape {mask.shape} for frame {ref_frame_idx}, xyxy: {mask_to_xyxy(mask)}"
)
# debug init state
logger.debug(f"model initiated with mask_logits of shape {mask_logits.shape}")
logger.debug(f"model initiated with object_ids of len {len(object_ids)}")
init_masks = (mask_logits > 0.0).cpu().numpy().astype(np.uint8)
init_masks = [m.squeeze() for m in init_masks]
# ref_frame_im = get_pil_im(np.array(vr.get_data(ref_frame_idx)))
# init_masks_im_fp = os.path.join(vframes_dir, f"model_init_masks.jpg")
# input_masks_im_fp = os.path.join(vframes_dir, f"input_masks.jpg")
# annotate_masks(ref_frame_im, init_masks).save(init_masks_im_fp)
# annotate_masks(ref_frame_im, masks).save(input_masks_im_fp)
# logger.debug(f"masks received by model visualized at {init_masks_im_fp}")
# logger.debug(f"masks provided to model visualized at {input_masks_im_fp}")
masks_generator = model.propagate_in_video(inference_state)
detections = unpack_masks(
masks_generator,
drop_mask=drop_mask,
frame_wh=(w, h),
)
if ref_frame_idx != 0:
logger.debug(f"propagating in reverse now from {ref_frame_idx}")
# there's no need to reset state
# model.reset_state(inference_state)
masks_generator = model.propagate_in_video(inference_state, reverse=True)
detections += unpack_masks(
masks_generator,
drop_mask=drop_mask,
frame_wh=(w, h),
)
if do_tidy_up:
# remove vframes_dir
shutil.rmtree(vframes_dir)
return detections