Spaces:
Runtime error
Runtime error
File size: 24,287 Bytes
c79133e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
import inspect
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
from PIL import Image
import torch
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models.autoencoders import AutoencoderKL
from diffusers.models.transformers import FluxTransformer2DModel
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines import FluxInpaintPipeline
from diffusers.pipelines.flux.pipeline_flux_inpaint import calculate_shift, retrieve_latents, retrieve_timesteps
class FluxTryonPipeline(FluxInpaintPipeline):
@staticmethod
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
def _prepare_latent_image_ids(batch_size, height, width, device, dtype, target_width=-1, tryon=False):
latent_image_ids = torch.zeros(height, width, 3)
if target_width==-1:
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
else:
latent_image_ids[:, target_width:, 0] = 1
# height keep as before
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
if tryon:
latent_image_ids[:, target_width*2:, 0] = 2
# left
latent_image_ids[:, :target_width, 2] = latent_image_ids[:, :target_width, 2] + torch.arange(target_width)[None, :]
# right
latent_image_ids[:, target_width:, 2] = latent_image_ids[:, target_width:, 2] + torch.arange(width-target_width)[None, :]
else:
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
def prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
target_width,
tryon,
dtype,
device,
generator,
latents=None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
shape = (batch_size, num_channels_latents, height, width)
sp = 2 * (int(target_width) // (self.vae_scale_factor * 2))//2 # -1
latent_image_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype, sp, tryon)
image = image.to(device=device, dtype=dtype)
# image_latents = self._encode_vae_image(image=image, generator=generator)
img_parts = [image[:,:,:,:target_width], image[:,:,:,target_width:]]
image_latents = [self._encode_vae_image(image=img, generator=generator) for img in img_parts]
image_latents = torch.cat(image_latents, dim=-1)
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
else:
noise = latents.to(device)
latents = noise
noise = self._pack_latents(noise, batch_size, num_channels_latents, height, width)
image_latents = self._pack_latents(image_latents, batch_size, num_channels_latents, height, width)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents, noise, image_latents, latent_image_ids
def prepare_mask_latents(
self,
mask,
masked_image,
batch_size,
num_channels_latents,
num_images_per_prompt,
height,
width,
dtype,
device,
generator,
):
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (self.vae_scale_factor * 2))
width = 2 * (int(width) // (self.vae_scale_factor * 2))
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(mask, size=(height, width), mode="nearest")
mask = mask.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
masked_image = masked_image.to(device=device, dtype=dtype)
if masked_image.shape[1] == 16:
masked_image_latents = masked_image
else:
masked_image_latents = retrieve_latents(self.vae.encode(masked_image), generator=generator)
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
masked_image_latents = self._pack_latents(
masked_image_latents,
batch_size,
num_channels_latents,
height,
width,
)
mask = self._pack_latents(
mask.repeat(1, num_channels_latents, 1, 1),
batch_size,
num_channels_latents,
height,
width,
)
return mask, masked_image_latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
target_width: Optional[int] = None,
tryon: bool = False,
padding_mask_crop: Optional[int] = None,
strength: float = 0.6,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
image,
mask_image,
strength,
height,
width,
output_type=output_type,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
padding_mask_crop=padding_mask_crop,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Preprocess mask and image
if padding_mask_crop is not None:
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
resize_mode = "fill"
else:
crops_coords = None
resize_mode = "default"
original_image = image
init_image = self.image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
)
init_image = init_image.to(dtype=torch.float32)
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4.Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = (int(height) // self.vae_scale_factor // 2) * (int(width) // self.vae_scale_factor // 2)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
num_channels_transformer = self.transformer.config.in_channels
latents, noise, image_latents, latent_image_ids= self.prepare_latents(
init_image,
latent_timestep,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
target_width,
tryon,
prompt_embeds.dtype,
device,
generator,
latents,
)
mask_condition = self.mask_processor.preprocess(
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
if masked_image_latents is None:
masked_image = init_image * (mask_condition < 0.5)
else:
masked_image = masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask_condition,
masked_image,
batch_size,
num_channels_latents,
num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# for 64 channel transformer only.
init_latents_proper = image_latents
init_mask = mask
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
'''
# for 64 channel transformer only.
init_latents_proper = image_latents
init_mask = mask
# NOTE: we just use clean latents
# if i < len(timesteps) - 1:
# noise_timestep = timesteps[i + 1]
# init_latents_proper = self.scheduler.scale_noise(
# init_latents_proper, torch.tensor([noise_timestep]), noise
# )
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
'''
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
# if XLA_AVAILABLE:
# xm.mark_step()
# latents = (1 - mask) * image_latents + mask * latents
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = latents[:,:,:,:target_width//self.vae_scale_factor]
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents.to(device=self.vae.device, dtype=self.vae.dtype), return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
def flux_pack_latents(latents, batch_size, num_channels_latents, height, width):
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latents = latents.permute(0, 2, 4, 1, 3, 5)
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
return latents
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
def flux_unpack_latents(latents, height, width, vae_scale_factor):
batch_size, num_patches, channels = latents.shape
# VAE applies 8x compression on images but we must also account for packing which requires
# latent height and width to be divisible by 2.
height = 2 * (int(height) // (vae_scale_factor * 2))
width = 2 * (int(width) // (vae_scale_factor * 2))
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
latents = latents.permute(0, 3, 1, 4, 2, 5)
latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
return latents
# TODO: it is more reasonable to have target pe staring at 0
def prepare_latent_image_ids(height, width_tgt, height_spa, width_spa, height_sub, width_sub, device, dtype):
assert width_spa==0 or width_tgt==width_spa
latent_image_ids = torch.zeros(height, width_tgt, 3, device=device, dtype=dtype)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height, device=device)[:, None] # y坐标
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width_tgt, device=device)[None, :] # x坐标
cond_mark = 0
if width_spa>0:
cond_mark += 1
condspa_image_ids = torch.zeros(height_spa, width_spa, 3, device=device, dtype=dtype)
condspa_image_ids[..., 0] = cond_mark
condspa_image_ids[..., 1] = condspa_image_ids[..., 1] + torch.arange(height_spa, device=device)[:, None]
condspa_image_ids[..., 2] = condspa_image_ids[..., 2] + torch.arange(width_spa, device=device)[None, :]
condspa_image_ids = condspa_image_ids.reshape(-1, condspa_image_ids.shape[-1])
if width_sub>0:
cond_mark += 1
condsub_image_ids = torch.zeros(height_sub, width_sub, 3, device=device, dtype=dtype)
condsub_image_ids[..., 0] = cond_mark
condsub_image_ids[..., 1] = condsub_image_ids[..., 1] + torch.arange(height_sub, device=device)[:, None]
condsub_image_ids[..., 2] = condsub_image_ids[..., 2] + torch.arange(width_sub, device=device)[None, :] + width_tgt
condsub_image_ids = condsub_image_ids.reshape(-1, condsub_image_ids.shape[-1])
latent_image_ids = latent_image_ids.reshape(-1, latent_image_ids.shape[-1])
latent_image_ids = torch.cat([latent_image_ids, condspa_image_ids],dim=-2) if width_spa>0 else latent_image_ids
latent_image_ids = torch.cat([latent_image_ids, condsub_image_ids],dim=-2) if width_sub>0 else latent_image_ids
return latent_image_ids
def crop_to_multiple_of_16(img):
width, height = img.size
# Calculate new dimensions that are multiples of 8
new_width = width - (width % 16)
new_height = height - (height % 16)
# Calculate crop box coordinates
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
# Crop the image
cropped_img = img.crop((left, top, right, bottom))
return cropped_img
def resize_and_pad_to_size(image, target_width, target_height):
# Convert numpy array to PIL Image if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Get original dimensions
orig_width, orig_height = image.size
# Calculate aspect ratios
target_ratio = target_width / target_height
orig_ratio = orig_width / orig_height
# Calculate new dimensions while maintaining aspect ratio
if orig_ratio > target_ratio:
# Image is wider than target ratio - scale by width
new_width = target_width
new_height = int(new_width / orig_ratio)
else:
# Image is taller than target ratio - scale by height
new_height = target_height
new_width = int(new_height * orig_ratio)
# Resize image
resized_image = image.resize((new_width, new_height))
# Create white background image of target size
padded_image = Image.new('RGB', (target_width, target_height), 'white')
# Calculate padding to center the image
left_padding = (target_width - new_width) // 2
top_padding = (target_height - new_height) // 2
# Paste resized image onto padded background
padded_image.paste(resized_image, (left_padding, top_padding))
return padded_image, left_padding, top_padding, target_width - new_width - left_padding, target_height - new_height - top_padding
def resize_by_height(image, height):
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# image is a PIL image
image = image.resize((int(image.width * height / image.height), height))
return crop_to_multiple_of_16(image) |