Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
from tools.final_answer import FinalAnswerTool | |
import nltk | |
import networkx as nx | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from nltk.tokenize import sent_tokenize | |
# Ensure necessary NLTK resources are downloaded | |
nltk.download('punkt_tab') | |
nltk.download('punkt') | |
from Gradio_UI import GradioUI | |
# Below is an example of a tool that does nothing. Amaze us with your creativity ! | |
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type | |
#Keep this format for the description / args / args description but feel free to modify the tool | |
"""A tool that does nothing yet | |
Args: | |
arg1: the first argument | |
arg2: the second argument | |
""" | |
return "What magic will you build ?" | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
# Create timezone object | |
tz = pytz.timezone(timezone) | |
# Get current time in that timezone | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
def extract_sent(doc: str, top_n: int = 3) -> list: | |
""" Extracts key sentences from a document using TextRank. | |
Args: | |
doc: The document (e.g., abstract) to extract sentences from. | |
top_n: The number of top-ranked sentences to return. | |
""" | |
try: | |
# Step 1: Tokenize the document into sentences | |
sentences = sent_tokenize(doc) | |
# Step 2: Convert sentences to vector representations (TF-IDF) | |
vectorizer = TfidfVectorizer() | |
sentence_vectors = vectorizer.fit_transform(sentences) | |
# Step 3: Compute similarity matrix (cosine similarity) | |
similarity_matrix = cosine_similarity(sentence_vectors) | |
# Step 4: Create a graph where nodes are sentences, and edges are similarities | |
sentence_graph = nx.from_numpy_array(similarity_matrix) | |
# Step 5: Apply PageRank algorithm to rank sentences | |
scores = nx.pagerank(sentence_graph) | |
# Step 6: Sort sentences by score and return top-N sentences | |
ranked_sentences = sorted(((scores[i], s) for i, s in enumerate(sentences)), reverse=True) | |
extracted_sentences = [s for _, s in ranked_sentences[:top_n]] | |
return "The extracted sentences are:\n" + "\n".join(extracted_sentences) | |
except Exception as e: | |
print(f"Error in extract_sent: {e}") | |
return e | |
final_answer = FinalAnswerTool() | |
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: | |
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded | |
custom_role_conversions=None, | |
) | |
# Import tool from Hub | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[get_current_time_in_timezone,image_generation_tool,extract_sent,final_answer], ## add your tools here (don't remove final answer) | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
GradioUI(agent).launch() |