import gradio as gr from huggingface_hub import InferenceClient from textblob import TextBlob import json import os import time import logging # Set up logging logging.basicConfig(level=logging.INFO) # Get the API token from the environment variable api_token = os.getenv('HUGGINGFACEHUB_API_TOKEN') client = InferenceClient( model="Futuresony/future_ai_12_10_2024.gguf", token=api_token ) # Directory to store interactions and feedback DATA_DIR = "data" INTERACTIONS_FILE = os.path.join(DATA_DIR, "interactions.json") # Ensure the data directory exists os.makedirs(DATA_DIR, exist_ok=True) def format_alpaca_prompt(user_input, system_prompt, history): """Formats input in Alpaca/LLaMA style""" history_str = "\n".join([f"### Instruction:\n{h[0]}\n### Response:\n{h[1]}" for h in history]) prompt = f"""{system_prompt} {history_str} ### Instruction: {user_input} ### Response: """ return prompt def analyze_sentiment(message): """Analyze the sentiment of the user's message""" blob = TextBlob(message) sentiment = blob.sentiment.polarity return sentiment def save_interaction(user_input, chatbot_response, feedback=None): """Save the interaction and feedback to a file""" interaction = { "user_input": user_input, "chatbot_response": chatbot_response, "feedback": feedback, "timestamp": "2025-02-25 14:08:31" } if os.path.exists(INTERACTIONS_FILE): with open(INTERACTIONS_FILE, "r") as file: interactions = json.load(file) else: interactions = [] interactions.append(interaction) with open(INTERACTIONS_FILE, "w") as file: json.dump(interactions, file, indent=4) def respond(message, history, system_message, max_tokens, temperature, top_p, feedback=None): sentiment = analyze_sentiment(message) # Adjust system message based on sentiment if sentiment < -0.2: system_message = "You are a sympathetic Chatbot." elif sentiment > 0.2: system_message = "You are an enthusiastic Chatbot." else: system_message = "You are a friendly Chatbot." formatted_prompt = format_alpaca_prompt(message, system_message, history) # Retry mechanism max_retries = 3 for attempt in range(max_retries): try: response = client.text_generation( formatted_prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) break # Exit the loop if the request is successful except Exception as e: logging.error(f"Attempt {attempt + 1} failed: {e}") if attempt < max_retries - 1: time.sleep(2 ** attempt) # Exponential backoff else: raise e # ✅ Extract only the response cleaned_response = response.split("### Response:")[-1].strip() history.append((message, cleaned_response)) # ✅ Update history with the new message and response save_interaction(message, cleaned_response, feedback) # ✅ Save the interaction and feedback yield cleaned_response # ✅ Output only the answer def collect_feedback(response, feedback): """Collect user feedback on the chatbot's response""" save_interaction(response, feedback=feedback) def view_interactions(): if os.path.exists(INTERACTIONS_FILE): with open(INTERACTIONS_FILE, "r") as file: interactions = json.load(file) return json.dumps(interactions, indent=4) else: return "No interactions found." def download_interactions(): """Provide the interactions file for download""" if os.path.exists(INTERACTIONS_FILE): return INTERACTIONS_FILE else: return None # Create a Gradio interface to display interactions view_interface = gr.Interface( fn=view_interactions, inputs=[], outputs="text", title="View Interactions" ) # Create a Gradio interface for downloading interactions download_interface = gr.Interface( fn=download_interactions, inputs=[], outputs=gr.File(label="Download Interactions"), title="Download Interactions" ) feedback_interface = gr.Interface( fn=collect_feedback, inputs=[ gr.Textbox(label="Response"), gr.Radio(choices=["Good", "Bad"], label="Feedback"), ], outputs="text", title="Feedback Interface" ) demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=250, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.9, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.99, step=0.01, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch() feedback_interface.launch() view_interface.launch() download_interface.launch()