Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,19 +7,32 @@ from peft import PeftModel # For loading adapter files
|
|
| 7 |
BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path
|
| 8 |
ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf/adapter" # Your Hugging Face repo
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Load base model and tokenizer
|
| 11 |
print("Loading base model and tokenizer...")
|
| 12 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
|
| 13 |
-
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_PATH, torch_dtype=torch.float16, device_map="auto")
|
| 14 |
|
| 15 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
print("Loading adapter...")
|
| 17 |
model = PeftModel.from_pretrained(model, ADAPTER_PATH)
|
| 18 |
|
| 19 |
# Set model to evaluation mode
|
| 20 |
model.eval()
|
| 21 |
|
| 22 |
-
#
|
| 23 |
def respond(
|
| 24 |
message,
|
| 25 |
history: list[tuple[str, str]],
|
|
@@ -28,7 +41,6 @@ def respond(
|
|
| 28 |
temperature,
|
| 29 |
top_p,
|
| 30 |
):
|
| 31 |
-
# Format chat messages
|
| 32 |
messages = [{"role": "system", "content": system_message}]
|
| 33 |
for val in history:
|
| 34 |
if val[0]:
|
|
@@ -38,10 +50,8 @@ def respond(
|
|
| 38 |
|
| 39 |
messages.append({"role": "user", "content": message})
|
| 40 |
|
| 41 |
-
#
|
| 42 |
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
|
| 43 |
-
|
| 44 |
-
# Tokenize input text
|
| 45 |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 46 |
|
| 47 |
# Generate response
|
|
@@ -51,12 +61,10 @@ def respond(
|
|
| 51 |
top_p=top_p,
|
| 52 |
do_sample=True,
|
| 53 |
)
|
| 54 |
-
|
| 55 |
output_ids = model.generate(**inputs, generation_config=generation_config)
|
| 56 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 57 |
|
| 58 |
-
return response.split("assistant:")[-1].strip()
|
| 59 |
-
|
| 60 |
|
| 61 |
# Gradio Interface
|
| 62 |
demo = gr.ChatInterface(
|
|
@@ -71,3 +79,4 @@ demo = gr.ChatInterface(
|
|
| 71 |
|
| 72 |
if __name__ == "__main__":
|
| 73 |
demo.launch()
|
|
|
|
|
|
| 7 |
BASE_MODEL_PATH = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model path
|
| 8 |
ADAPTER_PATH = "Futuresony/future_ai_12_10_2024.gguf/adapter" # Your Hugging Face repo
|
| 9 |
|
| 10 |
+
# Function to clean rope_scaling in model config
|
| 11 |
+
def clean_rope_scaling(config):
|
| 12 |
+
if "rope_scaling" in config:
|
| 13 |
+
valid_rope_scaling = {"type": "linear", "factor": config["rope_scaling"].get("factor", 1.0)}
|
| 14 |
+
config["rope_scaling"] = valid_rope_scaling
|
| 15 |
+
return config
|
| 16 |
+
|
| 17 |
# Load base model and tokenizer
|
| 18 |
print("Loading base model and tokenizer...")
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_PATH)
|
|
|
|
| 20 |
|
| 21 |
+
# Load and clean the model config
|
| 22 |
+
config = LlamaConfig.from_pretrained(BASE_MODEL_PATH)
|
| 23 |
+
clean_config = clean_rope_scaling(config.to_dict())
|
| 24 |
+
|
| 25 |
+
# Load model with cleaned config
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(BASE_MODEL_PATH, config=clean_config, torch_dtype=torch.float16, device_map="auto")
|
| 27 |
+
|
| 28 |
+
# Load adapter using PEFT
|
| 29 |
print("Loading adapter...")
|
| 30 |
model = PeftModel.from_pretrained(model, ADAPTER_PATH)
|
| 31 |
|
| 32 |
# Set model to evaluation mode
|
| 33 |
model.eval()
|
| 34 |
|
| 35 |
+
# Function to generate responses
|
| 36 |
def respond(
|
| 37 |
message,
|
| 38 |
history: list[tuple[str, str]],
|
|
|
|
| 41 |
temperature,
|
| 42 |
top_p,
|
| 43 |
):
|
|
|
|
| 44 |
messages = [{"role": "system", "content": system_message}]
|
| 45 |
for val in history:
|
| 46 |
if val[0]:
|
|
|
|
| 50 |
|
| 51 |
messages.append({"role": "user", "content": message})
|
| 52 |
|
| 53 |
+
# Prepare input
|
| 54 |
input_text = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages])
|
|
|
|
|
|
|
| 55 |
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 56 |
|
| 57 |
# Generate response
|
|
|
|
| 61 |
top_p=top_p,
|
| 62 |
do_sample=True,
|
| 63 |
)
|
|
|
|
| 64 |
output_ids = model.generate(**inputs, generation_config=generation_config)
|
| 65 |
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 66 |
|
| 67 |
+
return response.split("assistant:")[-1].strip()
|
|
|
|
| 68 |
|
| 69 |
# Gradio Interface
|
| 70 |
demo = gr.ChatInterface(
|
|
|
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|
| 81 |
demo.launch()
|
| 82 |
+
|