Spaces:
Runtime error
Runtime error
Create snac_utils.py
Browse files- utils/snac_utils.py +146 -0
utils/snac_utils.py
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import time
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class SnacConfig:
|
| 7 |
+
audio_vocab_size = 4096
|
| 8 |
+
padded_vocab_size = 4160
|
| 9 |
+
end_of_audio = 4097
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
snac_config = SnacConfig()
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_time_str():
|
| 16 |
+
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
|
| 17 |
+
return time_str
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def layershift(input_id, layer, stride=4160, shift=152000):
|
| 21 |
+
return input_id + shift + layer * stride
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def generate_audio_data(snac_tokens, snacmodel, device=None):
|
| 25 |
+
audio = reconstruct_tensors(snac_tokens, device)
|
| 26 |
+
with torch.inference_mode():
|
| 27 |
+
audio_hat = snacmodel.decode(audio)
|
| 28 |
+
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
| 29 |
+
audio_data = audio_data.astype(np.int16)
|
| 30 |
+
audio_data = audio_data.tobytes()
|
| 31 |
+
return audio_data
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def get_snac(list_output, index, nums_generate):
|
| 35 |
+
|
| 36 |
+
snac = []
|
| 37 |
+
start = index
|
| 38 |
+
for i in range(nums_generate):
|
| 39 |
+
snac.append("#")
|
| 40 |
+
for j in range(7):
|
| 41 |
+
snac.append(list_output[j][start - nums_generate - 5 + j + i])
|
| 42 |
+
return snac
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def reconscruct_snac(output_list):
|
| 46 |
+
if len(output_list) == 8:
|
| 47 |
+
output_list = output_list[:-1]
|
| 48 |
+
output = []
|
| 49 |
+
for i in range(7):
|
| 50 |
+
output_list[i] = output_list[i][i + 1 :]
|
| 51 |
+
for i in range(len(output_list[-1])):
|
| 52 |
+
output.append("#")
|
| 53 |
+
for j in range(7):
|
| 54 |
+
output.append(output_list[j][i])
|
| 55 |
+
return output
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def reconstruct_tensors(flattened_output, device=None):
|
| 59 |
+
"""Reconstructs the list of tensors from the flattened output."""
|
| 60 |
+
|
| 61 |
+
if device is None:
|
| 62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 63 |
+
|
| 64 |
+
def count_elements_between_hashes(lst):
|
| 65 |
+
try:
|
| 66 |
+
# Find the index of the first '#'
|
| 67 |
+
first_index = lst.index("#")
|
| 68 |
+
# Find the index of the second '#' after the first
|
| 69 |
+
second_index = lst.index("#", first_index + 1)
|
| 70 |
+
# Count the elements between the two indices
|
| 71 |
+
return second_index - first_index - 1
|
| 72 |
+
except ValueError:
|
| 73 |
+
# Handle the case where there aren't enough '#' symbols
|
| 74 |
+
return "List does not contain two '#' symbols"
|
| 75 |
+
|
| 76 |
+
def remove_elements_before_hash(flattened_list):
|
| 77 |
+
try:
|
| 78 |
+
# Find the index of the first '#'
|
| 79 |
+
first_hash_index = flattened_list.index("#")
|
| 80 |
+
# Return the list starting from the first '#'
|
| 81 |
+
return flattened_list[first_hash_index:]
|
| 82 |
+
except ValueError:
|
| 83 |
+
# Handle the case where there is no '#'
|
| 84 |
+
return "List does not contain the symbol '#'"
|
| 85 |
+
|
| 86 |
+
def list_to_torch_tensor(tensor1):
|
| 87 |
+
# Convert the list to a torch tensor
|
| 88 |
+
tensor = torch.tensor(tensor1)
|
| 89 |
+
# Reshape the tensor to have size (1, n)
|
| 90 |
+
tensor = tensor.unsqueeze(0)
|
| 91 |
+
return tensor
|
| 92 |
+
|
| 93 |
+
flattened_output = remove_elements_before_hash(flattened_output)
|
| 94 |
+
codes = []
|
| 95 |
+
tensor1 = []
|
| 96 |
+
tensor2 = []
|
| 97 |
+
tensor3 = []
|
| 98 |
+
tensor4 = []
|
| 99 |
+
|
| 100 |
+
n_tensors = count_elements_between_hashes(flattened_output)
|
| 101 |
+
if n_tensors == 7:
|
| 102 |
+
for i in range(0, len(flattened_output), 8):
|
| 103 |
+
|
| 104 |
+
tensor1.append(flattened_output[i + 1])
|
| 105 |
+
tensor2.append(flattened_output[i + 2])
|
| 106 |
+
tensor3.append(flattened_output[i + 3])
|
| 107 |
+
tensor3.append(flattened_output[i + 4])
|
| 108 |
+
|
| 109 |
+
tensor2.append(flattened_output[i + 5])
|
| 110 |
+
tensor3.append(flattened_output[i + 6])
|
| 111 |
+
tensor3.append(flattened_output[i + 7])
|
| 112 |
+
codes = [
|
| 113 |
+
list_to_torch_tensor(tensor1).to(device),
|
| 114 |
+
list_to_torch_tensor(tensor2).to(device),
|
| 115 |
+
list_to_torch_tensor(tensor3).to(device),
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
if n_tensors == 15:
|
| 119 |
+
for i in range(0, len(flattened_output), 16):
|
| 120 |
+
|
| 121 |
+
tensor1.append(flattened_output[i + 1])
|
| 122 |
+
tensor2.append(flattened_output[i + 2])
|
| 123 |
+
tensor3.append(flattened_output[i + 3])
|
| 124 |
+
tensor4.append(flattened_output[i + 4])
|
| 125 |
+
tensor4.append(flattened_output[i + 5])
|
| 126 |
+
tensor3.append(flattened_output[i + 6])
|
| 127 |
+
tensor4.append(flattened_output[i + 7])
|
| 128 |
+
tensor4.append(flattened_output[i + 8])
|
| 129 |
+
|
| 130 |
+
tensor2.append(flattened_output[i + 9])
|
| 131 |
+
tensor3.append(flattened_output[i + 10])
|
| 132 |
+
tensor4.append(flattened_output[i + 11])
|
| 133 |
+
tensor4.append(flattened_output[i + 12])
|
| 134 |
+
tensor3.append(flattened_output[i + 13])
|
| 135 |
+
tensor4.append(flattened_output[i + 14])
|
| 136 |
+
tensor4.append(flattened_output[i + 15])
|
| 137 |
+
|
| 138 |
+
codes = [
|
| 139 |
+
list_to_torch_tensor(tensor1).to(device),
|
| 140 |
+
list_to_torch_tensor(tensor2).to(device),
|
| 141 |
+
list_to_torch_tensor(tensor3).to(device),
|
| 142 |
+
list_to_torch_tensor(tensor4).to(device),
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
return codes
|
| 146 |
+
|