Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from collections import defaultdict | |
# Initialize the model client | |
client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") | |
# Store user preferences & history | |
user_preferences = defaultdict(int) # Tracks keywords & topics | |
session_histories = defaultdict(list) # Stores conversation history per session | |
def extract_keywords(text): | |
"""Extracts simple keywords from user input.""" | |
words = text.lower().split() | |
common_words = {"the", "is", "a", "and", "to", "of", "in", "it", "you", "for"} # Ignore common words | |
return [word for word in words if word not in common_words] | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
session_id = id(history) # Unique ID for each session | |
session_history = session_histories[session_id] # Retrieve session history | |
# Extract keywords & update preferences | |
keywords = extract_keywords(message) | |
for kw in keywords: | |
user_preferences[kw] += 1 | |
# Add past conversation to message history | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, bot_response in session_history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": bot_response}) | |
# Append current user message | |
messages.append({"role": "user", "content": message}) | |
# Generate response from model | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response # Stream response to user | |
# Save to session history | |
session_history.append((message, response)) | |
# Optionally, adapt responses based on learned preferences | |
most_asked = max(user_preferences, key=user_preferences.get, default=None) | |
if most_asked and most_asked in message.lower(): | |
response += f"\n\nI see you're interested in {most_asked} a lot! Want to explore more details?" | |
yield response # Update response with learning behavior | |
# Create Chat Interface | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly chatbot that learns user interests.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |