Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from peft import PeftModel | |
| import gradio as gr | |
| # -------------------- | |
| # Load Base Model and LoRA Adapter | |
| # -------------------- | |
| def load_model_and_adapter(): | |
| base_model_name = "unsloth/Llama-3.2-3B-Instruct" # Replace with your base model name | |
| adapter_repo = "Futuresony/future_ai_12_10_2024" # Your Hugging Face LoRA repo | |
| # Load tokenizer and base model | |
| tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
| base_model = AutoModelForCausalLM.from_pretrained( | |
| base_model_name, | |
| torch_dtype=torch.float16, # Use float16 for efficiency if GPU is available | |
| device_map="auto" # Automatically map to GPU or CPU | |
| ) | |
| # Load LoRA adapter | |
| model = PeftModel.from_pretrained(base_model, adapter_repo) | |
| model.eval() # Set to evaluation mode | |
| return tokenizer, model | |
| # Load the model and tokenizer once | |
| tokenizer, model = load_model_and_adapter() | |
| # -------------------- | |
| # Generate Response Function | |
| # -------------------- | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| # Prepare input prompt for generation | |
| prompt = "\n".join([f"{m['role']}: {m['content']}" for m in messages]) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| # Generate response | |
| outputs = model.generate( | |
| **inputs, | |
| max_length=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id, | |
| eos_token_id=tokenizer.eos_token_id | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| response = response.split("assistant:")[-1].strip() # Clean response | |
| return response | |
| # -------------------- | |
| # Gradio Interface | |
| # -------------------- | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| # -------------------- | |
| # Launch the Interface | |
| # -------------------- | |
| if __name__ == "__main__": | |
| demo.launch() | |