Spaces:
Runtime error
Runtime error
| import os | |
| import lightning as L | |
| import torch | |
| import time | |
| from snac import SNAC | |
| from litgpt import Tokenizer | |
| from litgpt.utils import ( | |
| num_parameters, | |
| ) | |
| from litgpt.generate.base import ( | |
| generate_AA, | |
| generate_ASR, | |
| generate_TA, | |
| generate_TT, | |
| generate_AT, | |
| generate_TA_BATCH, | |
| next_token_batch | |
| ) | |
| import soundfile as sf | |
| from litgpt.model import GPT, Config | |
| from lightning.fabric.utilities.load import _lazy_load as lazy_load | |
| from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str | |
| from utils.snac_utils import get_snac, generate_audio_data | |
| import whisper | |
| from tqdm import tqdm | |
| from huggingface_hub import snapshot_download | |
| torch.set_printoptions(sci_mode=False) | |
| # TODO | |
| text_vocabsize = 151936 | |
| text_specialtokens = 64 | |
| audio_vocabsize = 4096 | |
| audio_specialtokens = 64 | |
| padded_text_vocabsize = text_vocabsize + text_specialtokens | |
| padded_audio_vocabsize = audio_vocabsize + audio_specialtokens | |
| _eot = text_vocabsize | |
| _pad_t = text_vocabsize + 1 | |
| _input_t = text_vocabsize + 2 | |
| _answer_t = text_vocabsize + 3 | |
| _asr = text_vocabsize + 4 | |
| _eoa = audio_vocabsize | |
| _pad_a = audio_vocabsize + 1 | |
| _input_a = audio_vocabsize + 2 | |
| _answer_a = audio_vocabsize + 3 | |
| _split = audio_vocabsize + 4 | |
| def get_input_ids_TA(text, text_tokenizer): | |
| input_ids_item = [[] for _ in range(8)] | |
| text_tokens = text_tokenizer.encode(text) | |
| for i in range(7): | |
| input_ids_item[i] = [layershift(_pad_a, i)] * (len(text_tokens) + 2) + [ | |
| layershift(_answer_a, i) | |
| ] | |
| input_ids_item[i] = torch.tensor(input_ids_item[i]).unsqueeze(0) | |
| input_ids_item[-1] = [_input_t] + text_tokens.tolist() + [_eot] + [_answer_t] | |
| input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0) | |
| return input_ids_item | |
| def get_input_ids_TT(text, text_tokenizer): | |
| input_ids_item = [[] for i in range(8)] | |
| text_tokens = text_tokenizer.encode(text).tolist() | |
| for i in range(7): | |
| input_ids_item[i] = torch.tensor( | |
| [layershift(_pad_a, i)] * (len(text_tokens) + 3) | |
| ).unsqueeze(0) | |
| input_ids_item[-1] = [_input_t] + text_tokens + [_eot] + [_answer_t] | |
| input_ids_item[-1] = torch.tensor(input_ids_item[-1]).unsqueeze(0) | |
| return input_ids_item | |
| def get_input_ids_whisper( | |
| mel, leng, whispermodel, device, | |
| special_token_a=_answer_a, special_token_t=_answer_t, | |
| ): | |
| with torch.no_grad(): | |
| mel = mel.unsqueeze(0).to(device) | |
| # audio_feature = whisper.decode(whispermodel,mel, options).audio_features | |
| audio_feature = whispermodel.embed_audio(mel)[0][:leng] | |
| T = audio_feature.size(0) | |
| input_ids = [] | |
| for i in range(7): | |
| input_ids_item = [] | |
| input_ids_item.append(layershift(_input_a, i)) | |
| input_ids_item += [layershift(_pad_a, i)] * T | |
| input_ids_item += [(layershift(_eoa, i)), layershift(special_token_a, i)] | |
| input_ids.append(torch.tensor(input_ids_item).unsqueeze(0)) | |
| input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, special_token_t]) | |
| input_ids.append(input_id_T.unsqueeze(0)) | |
| return audio_feature.unsqueeze(0), input_ids | |
| def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device): | |
| with torch.no_grad(): | |
| mel = mel.unsqueeze(0).to(device) | |
| # audio_feature = whisper.decode(whispermodel,mel, options).audio_features | |
| audio_feature = whispermodel.embed_audio(mel)[0][:leng] | |
| T = audio_feature.size(0) | |
| input_ids_AA = [] | |
| for i in range(7): | |
| input_ids_item = [] | |
| input_ids_item.append(layershift(_input_a, i)) | |
| input_ids_item += [layershift(_pad_a, i)] * T | |
| input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)] | |
| input_ids_AA.append(torch.tensor(input_ids_item)) | |
| input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) | |
| input_ids_AA.append(input_id_T) | |
| input_ids_AT = [] | |
| for i in range(7): | |
| input_ids_item = [] | |
| input_ids_item.append(layershift(_input_a, i)) | |
| input_ids_item += [layershift(_pad_a, i)] * T | |
| input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)] | |
| input_ids_AT.append(torch.tensor(input_ids_item)) | |
| input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t]) | |
| input_ids_AT.append(input_id_T) | |
| input_ids = [input_ids_AA, input_ids_AT] | |
| stacked_inputids = [[] for _ in range(8)] | |
| for i in range(2): | |
| for j in range(8): | |
| stacked_inputids[j].append(input_ids[i][j]) | |
| stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids] | |
| return torch.stack([audio_feature, audio_feature]), stacked_inputids | |
| def load_audio(path): | |
| audio = whisper.load_audio(path) | |
| duration_ms = (len(audio) / 16000) * 1000 | |
| audio = whisper.pad_or_trim(audio) | |
| mel = whisper.log_mel_spectrogram(audio) | |
| return mel, int(duration_ms / 20) + 1 | |
| def A1_A2_batch(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, | |
| snacmodel, out_dir=None): | |
| with fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=2) | |
| tokenlist = generate_TA_BATCH( | |
| model, | |
| audio_feature, | |
| input_ids, | |
| [leng, leng], | |
| ["A1A2", "A1T2"], | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| pad_id_t=_pad_t, | |
| shift=padded_text_vocabsize, | |
| include_prompt=True, | |
| generate_text=True, | |
| ) | |
| text_tokenlist = tokenlist[-1] | |
| if text_vocabsize in text_tokenlist: | |
| text_tokenlist = text_tokenlist[: text_tokenlist.index(text_vocabsize)] | |
| text = text_tokenizer.decode(torch.tensor(text_tokenlist)).strip() | |
| audio_tokenlist = tokenlist[:-1] | |
| audiolist = reconscruct_snac(audio_tokenlist) | |
| audio = reconstruct_tensors(audiolist) | |
| if out_dir is None: | |
| out_dir = "./output/default/A1-A2-batch" | |
| else: | |
| out_dir = out_dir + "/A1-A2-batch" | |
| if not os.path.exists(out_dir): | |
| os.makedirs(out_dir) | |
| with torch.inference_mode(): | |
| audio_hat = snacmodel.decode(audio) | |
| sf.write( | |
| f"{out_dir}/{step:02d}.wav", | |
| audio_hat.squeeze().cpu().numpy(), | |
| 24000, | |
| ) | |
| model.clear_kv_cache() | |
| return text | |
| def A1_T2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step): | |
| with fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=1) | |
| tokenlist = generate_AT( | |
| model, | |
| audio_feature, | |
| input_ids, | |
| [leng], | |
| ["AT"], | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| pad_id_t=_pad_t, | |
| shift=padded_text_vocabsize, | |
| include_prompt=True, | |
| generate_text=True, | |
| ) | |
| return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
| def A1_A2(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, | |
| snacmodel, out_dir=None): | |
| with fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=1) | |
| tokenlist = generate_AA( | |
| model, | |
| audio_feature, | |
| input_ids, | |
| [leng], | |
| ["A1T2"], | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| pad_id_t=_pad_t, | |
| shift=padded_text_vocabsize, | |
| include_prompt=True, | |
| generate_text=True, | |
| ) | |
| audiolist = reconscruct_snac(tokenlist) | |
| tokenlist = tokenlist[-1] | |
| if text_vocabsize in tokenlist: | |
| tokenlist = tokenlist[: tokenlist.index(text_vocabsize)] | |
| if out_dir is None: | |
| out_dir = "./output/default/A1-A2" | |
| else: | |
| out_dir = out_dir + "/A1-A2" | |
| if not os.path.exists(out_dir): | |
| os.makedirs(out_dir) | |
| audio = reconstruct_tensors(audiolist) | |
| with torch.inference_mode(): | |
| audio_hat = snacmodel.decode(audio) | |
| sf.write( | |
| f"{out_dir}/{step:02d}.wav", | |
| audio_hat.squeeze().cpu().numpy(), | |
| 24000, | |
| ) | |
| model.clear_kv_cache() | |
| return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
| def A1_T1(fabric, audio_feature, input_ids, leng, model, text_tokenizer, step): | |
| with fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=1) | |
| tokenlist = generate_ASR( | |
| model, | |
| audio_feature, | |
| input_ids, | |
| [leng], | |
| ["A1T1"], | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| pad_id_t=_pad_t, | |
| shift=padded_text_vocabsize, | |
| include_prompt=True, | |
| generate_text=True, | |
| ) | |
| model.clear_kv_cache() | |
| return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
| def T1_A2(fabric, input_ids, model, text_tokenizer, step, | |
| snacmodel, out_dir=None): | |
| with fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=1) | |
| tokenlist = generate_TA( | |
| model, | |
| None, | |
| input_ids, | |
| None, | |
| ["T1A2"], | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| pad_id_t=_pad_t, | |
| shift=padded_text_vocabsize, | |
| include_prompt=True, | |
| generate_text=True, | |
| ) | |
| audiolist = reconscruct_snac(tokenlist) | |
| tokenlist = tokenlist[-1] | |
| if text_vocabsize in tokenlist: | |
| tokenlist = tokenlist[: tokenlist.index(text_vocabsize)] | |
| audio = reconstruct_tensors(audiolist) | |
| if out_dir is None: | |
| out_dir = "./output/default/T1-A2" | |
| else: | |
| out_dir = out_dir + "/T1-A2" | |
| if not os.path.exists(out_dir): | |
| os.makedirs(out_dir) | |
| with torch.inference_mode(): | |
| audio_hat = snacmodel.decode(audio) | |
| sf.write( | |
| f"{out_dir}/{step:02d}.wav", | |
| audio_hat.squeeze().cpu().numpy(), | |
| 24000, | |
| ) | |
| model.clear_kv_cache() | |
| return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
| def T1_T2(fabric, input_ids, model, text_tokenizer, step): | |
| with fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=1) | |
| tokenlist = generate_TT( | |
| model, | |
| None, | |
| input_ids, | |
| None, | |
| ["T1T2"], | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| pad_id_t=_pad_t, | |
| shift=padded_text_vocabsize, | |
| include_prompt=True, | |
| generate_text=True, | |
| ) | |
| model.clear_kv_cache() | |
| return text_tokenizer.decode(torch.tensor(tokenlist)).strip() | |
| def load_model(ckpt_dir, device): | |
| snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device) | |
| whispermodel = whisper.load_model("small").to(device) | |
| text_tokenizer = Tokenizer(ckpt_dir) | |
| fabric = L.Fabric(devices=1, strategy="auto") | |
| config = Config.from_file(ckpt_dir + "/model_config.yaml") | |
| config.post_adapter = False | |
| with fabric.init_module(empty_init=False): | |
| model = GPT(config) | |
| model = fabric.setup(model) | |
| state_dict = lazy_load(ckpt_dir + "/lit_model.pth") | |
| model.load_state_dict(state_dict, strict=True) | |
| model.to(device).eval() | |
| return fabric, model, text_tokenizer, snacmodel, whispermodel | |
| def download_model(ckpt_dir): | |
| repo_id = "gpt-omni/mini-omni" | |
| snapshot_download(repo_id, local_dir=ckpt_dir, revision="main") | |
| class OmniInference: | |
| def __init__(self, ckpt_dir='./checkpoint', device='cuda:0'): | |
| self.device = device | |
| if not os.path.exists(ckpt_dir): | |
| print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") | |
| download_model(ckpt_dir) | |
| self.fabric, self.model, self.text_tokenizer, self.snacmodel, self.whispermodel = load_model(ckpt_dir, device) | |
| def warm_up(self, sample='./data/samples/output1.wav'): | |
| for _ in self.run_AT_batch_stream(sample): | |
| pass | |
| def run_AT_batch_stream(self, | |
| audio_path, | |
| stream_stride=4, | |
| max_returned_tokens=2048, | |
| temperature=0.9, | |
| top_k=1, | |
| top_p=1.0, | |
| eos_id_a=_eoa, | |
| eos_id_t=_eot, | |
| ): | |
| assert os.path.exists(audio_path), f"audio file {audio_path} not found" | |
| model = self.model | |
| with self.fabric.init_tensor(): | |
| model.set_kv_cache(batch_size=2,device=self.device) | |
| mel, leng = load_audio(audio_path) | |
| audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, self.whispermodel, self.device) | |
| T = input_ids[0].size(1) | |
| device = input_ids[0].device | |
| assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}" | |
| if model.max_seq_length < max_returned_tokens - 1: | |
| raise NotImplementedError( | |
| f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}" | |
| ) | |
| input_pos = torch.tensor([T], device=device) | |
| list_output = [[] for i in range(8)] | |
| tokens_A, token_T = next_token_batch( | |
| model, | |
| audio_feature.to(torch.float32).to(model.device), | |
| input_ids, | |
| [T - 3, T - 3], | |
| ["A1T2", "A1T2"], | |
| input_pos=torch.arange(0, T, device=device), | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| ) | |
| for i in range(7): | |
| list_output[i].append(tokens_A[i].tolist()[0]) | |
| list_output[7].append(token_T.tolist()[0]) | |
| model_input_ids = [[] for i in range(8)] | |
| for i in range(7): | |
| tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize | |
| model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) | |
| model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device)) | |
| model_input_ids[i] = torch.stack(model_input_ids[i]) | |
| model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
| model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
| model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
| text_end = False | |
| index = 1 | |
| nums_generate = stream_stride | |
| begin_generate = False | |
| current_index = 0 | |
| for _ in tqdm(range(2, max_returned_tokens - T + 1)): | |
| tokens_A, token_T = next_token_batch( | |
| model, | |
| None, | |
| model_input_ids, | |
| None, | |
| None, | |
| input_pos=input_pos, | |
| temperature=temperature, | |
| top_k=top_k, | |
| top_p=top_p, | |
| ) | |
| if text_end: | |
| token_T = torch.tensor([_pad_t], device=device) | |
| if tokens_A[-1] == eos_id_a: | |
| break | |
| if token_T == eos_id_t: | |
| text_end = True | |
| for i in range(7): | |
| list_output[i].append(tokens_A[i].tolist()[0]) | |
| list_output[7].append(token_T.tolist()[0]) | |
| model_input_ids = [[] for i in range(8)] | |
| for i in range(7): | |
| tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize | |
| model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32)) | |
| model_input_ids[i].append( | |
| torch.tensor([layershift(4097, i)], device=device) | |
| ) | |
| model_input_ids[i] = torch.stack(model_input_ids[i]) | |
| model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
| model_input_ids[-1].append(token_T.clone().to(torch.int32)) | |
| model_input_ids[-1] = torch.stack(model_input_ids[-1]) | |
| if index == 7: | |
| begin_generate = True | |
| if begin_generate: | |
| current_index += 1 | |
| if current_index == nums_generate: | |
| current_index = 0 | |
| snac = get_snac(list_output, index, nums_generate) | |
| audio_stream = generate_audio_data(snac, self.snacmodel, self.device) | |
| yield audio_stream | |
| input_pos = input_pos.add_(1) | |
| index += 1 | |
| text = self.text_tokenizer.decode(torch.tensor(list_output[-1])) | |
| print(f"text output: {text}") | |
| model.clear_kv_cache() | |
| return list_output | |
| def test_infer(): | |
| device = "cuda:0" | |
| out_dir = f"./output/{get_time_str()}" | |
| ckpt_dir = f"./checkpoint" | |
| if not os.path.exists(ckpt_dir): | |
| print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface") | |
| download_model(ckpt_dir) | |
| fabric, model, text_tokenizer, snacmodel, whispermodel = load_model(ckpt_dir, device) | |
| task = ['A1A2', 'asr', "T1A2", "AA-BATCH", 'T1T2', 'AT'] | |
| # prepare test data | |
| # TODO | |
| test_audio_list = sorted(os.listdir('./data/samples')) | |
| test_audio_list = [os.path.join('./data/samples', path) for path in test_audio_list] | |
| test_audio_transcripts = [ | |
| "What is your name?", | |
| "what are your hobbies?", | |
| "Do you like beijing", | |
| "How are you feeling today?", | |
| "what is the weather like today?", | |
| ] | |
| test_text_list = [ | |
| "What is your name?", | |
| "How are you feeling today?", | |
| "Can you describe your surroundings?", | |
| "What did you do yesterday?", | |
| "What is your favorite book and why?", | |
| "How do you make a cup of tea?", | |
| "What is the weather like today?", | |
| "Can you explain the concept of time?", | |
| "Can you tell me a joke?", | |
| ] | |
| # LOAD MODEL | |
| with torch.no_grad(): | |
| if "A1A2" in task: | |
| print("===============================================================") | |
| print(" testing A1A2") | |
| print("===============================================================") | |
| step = 0 | |
| for path in test_audio_list: | |
| try: | |
| mel, leng = load_audio(path) | |
| audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device) | |
| text = A1_A2( | |
| fabric, | |
| audio_feature, | |
| input_ids, | |
| leng, | |
| model, | |
| text_tokenizer, | |
| step, | |
| snacmodel, | |
| out_dir=out_dir, | |
| ) | |
| print(f"input: {test_audio_transcripts[step]}") | |
| print(f"output: {text}") | |
| step += 1 | |
| print( | |
| "+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++" | |
| ) | |
| except: | |
| print(f"[error] failed to process {path}") | |
| print("===============================================================") | |
| if 'asr' in task: | |
| print("===============================================================") | |
| print(" testing asr") | |
| print("===============================================================") | |
| index = 0 | |
| step = 0 | |
| for path in test_audio_list: | |
| mel, leng = load_audio(path) | |
| audio_feature, input_ids = get_input_ids_whisper(mel, leng, whispermodel, device, special_token_a=_pad_a, special_token_t=_asr) | |
| output = A1_T1(fabric, audio_feature, input_ids ,leng, model, text_tokenizer, index).lower().replace(',','').replace('.','').replace('?','') | |
| print(f"audio_path: {path}") | |
| print(f"audio transcript: {test_audio_transcripts[index]}") | |
| print(f"asr output: {output}") | |
| print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
| index += 1 | |
| if "T1A2" in task: | |
| step = 0 | |
| print("\n") | |
| print("===============================================================") | |
| print(" testing T1A2") | |
| print("===============================================================") | |
| for text in test_text_list: | |
| input_ids = get_input_ids_TA(text, text_tokenizer) | |
| text_output = T1_A2(fabric, input_ids, model, text_tokenizer, step, | |
| snacmodel, out_dir=out_dir) | |
| print(f"input: {text}") | |
| print(f"output: {text_output}") | |
| print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
| step += 1 | |
| print("===============================================================") | |
| if "T1T2" in task: | |
| step = 0 | |
| print("\n") | |
| print("===============================================================") | |
| print(" testing T1T2") | |
| print("===============================================================") | |
| for text in test_text_list: | |
| input_ids = get_input_ids_TT(text, text_tokenizer) | |
| text_output = T1_T2(fabric, input_ids, model, text_tokenizer, step) | |
| print(f" Input: {text}") | |
| print(f"Output: {text_output}") | |
| print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
| print("===============================================================") | |
| if "AT" in task: | |
| print("===============================================================") | |
| print(" testing A1T2") | |
| print("===============================================================") | |
| step = 0 | |
| for path in test_audio_list: | |
| mel, leng = load_audio(path) | |
| audio_feature, input_ids = get_input_ids_whisper( | |
| mel, leng, whispermodel, device, | |
| special_token_a=_pad_a, special_token_t=_answer_t | |
| ) | |
| text = A1_T2( | |
| fabric, audio_feature, input_ids, leng, model, text_tokenizer, step | |
| ) | |
| print(f"input: {test_audio_transcripts[step]}") | |
| print(f"output: {text}") | |
| step += 1 | |
| print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
| print("===============================================================") | |
| if "AA-BATCH" in task: | |
| print("===============================================================") | |
| print(" testing A1A2-BATCH") | |
| print("===============================================================") | |
| step = 0 | |
| for path in test_audio_list: | |
| mel, leng = load_audio(path) | |
| audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device) | |
| text = A1_A2_batch( | |
| fabric, audio_feature, input_ids, leng, model, text_tokenizer, step, | |
| snacmodel, out_dir=out_dir | |
| ) | |
| print(f"input: {test_audio_transcripts[step]}") | |
| print(f"output: {text}") | |
| step += 1 | |
| print("+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++") | |
| print("===============================================================") | |
| print("*********************** test end *****************************") | |
| if __name__ == "__main__": | |
| test_infer() | |