import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline from datasets import load_dataset import soundfile as sf import torch # Initialize the chat model chat_client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf") # Initialize the TTS pipeline tts_synthesizer = pipeline("text-to-speech", model="Futuresony/Output") # Load the speaker embeddings dataset embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def chat_with_tts(message, history, system_message, max_tokens, temperature, top_p): # Step 1: Generate response using the chat model messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for msg in chat_client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = msg.choices[0].delta.content response += token # Step 2: Generate speech using TTS speech = tts_synthesizer(response, forward_params={"speaker_embeddings": speaker_embedding}) output_file = "generated_speech.wav" sf.write(output_file, speech["audio"], samplerate=speech["sampling_rate"]) # Update the chat history history.append((message, response)) # Return both text response, audio file, and updated history return response, output_file, history # Create the Gradio interface demo = gr.Interface( fn=chat_with_tts, inputs=[ gr.Textbox(label="User Input", placeholder="Type your message..."), gr.State([]), # Initialize history as an empty list gr.Textbox(value="You are a friendly chatbot.", label="System Message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), ], outputs=[ gr.Textbox(label="Generated Response"), gr.Audio(label="Generated Speech"), gr.State(), # Add State as an output to update the history ], title="Chat with TTS", description="Enter text to chat with an AI chatbot. The chatbot will generate a response, which will also be converted to speech using TTS." ) if __name__ == "__main__": demo.launch()