Futuresony commited on
Commit
a50fa01
·
verified ·
1 Parent(s): c0a5ea8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -0
app.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ from huggingface_hub import InferenceClient
4
+ from transformers import pipeline
5
+ from datasets import load_dataset
6
+ import soundfile as sf
7
+ import torch
8
+
9
+ # Initialize the chat model
10
+ chat_client = InferenceClient("Futuresony/future_ai_12_10_2024.gguf")
11
+
12
+ # Initialize the TTS pipeline
13
+ tts_synthesizer = pipeline("text-to-speech", model="Futuresony/output")
14
+
15
+ # Load the speaker embeddings dataset
16
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
17
+ speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
18
+
19
+ def chat_with_tts(message, history, system_message, max_tokens, temperature, top_p):
20
+ # Step 1: Generate response using the chat model
21
+ messages = [{"role": "system", "content": system_message}]
22
+
23
+ for val in history:
24
+ if val[0]:
25
+ messages.append({"role": "user", "content": val[0]})
26
+ if val[1]:
27
+ messages.append({"role": "assistant", "content": val[1]})
28
+
29
+ messages.append({"role": "user", "content": message})
30
+
31
+ response = ""
32
+ for msg in chat_client.chat_completion(
33
+ messages,
34
+ max_tokens=max_tokens,
35
+ stream=True,
36
+ temperature=temperature,
37
+ top_p=top_p,
38
+ ):
39
+ token = msg.choices[0].delta.content
40
+ response += token
41
+
42
+ # Step 2: Generate speech using TTS
43
+ speech = tts_synthesizer(response, forward_params={"speaker_embeddings": speaker_embedding})
44
+ output_file = "generated_speech.wav"
45
+ sf.write(output_file, speech["audio"], samplerate=speech["sampling_rate"])
46
+
47
+ # Update the chat history
48
+ history.append((message, response))
49
+
50
+ # Return both text response, audio file, and updated history
51
+ return response, output_file, history
52
+
53
+ # Create the Gradio interface
54
+ demo = gr.Interface(
55
+ fn=chat_with_tts,
56
+ inputs=[
57
+ gr.Textbox(label="User Input", placeholder="Type your message..."),
58
+ gr.State([]), # Initialize history as an empty list
59
+ gr.Textbox(value="You are a friendly chatbot.", label="System Message"),
60
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
61
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
62
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
63
+ ],
64
+ outputs=[
65
+ gr.Textbox(label="Generated Response"),
66
+ gr.Audio(label="Generated Speech"),
67
+ gr.State(), # Add State as an output to update the history
68
+ ],
69
+ title="Chat with TTS",
70
+ description="Enter text to chat with an AI chatbot. The chatbot will generate a response, which will also be converted to speech using TTS."
71
+ )
72
+
73
+ if __name__ == "__main__":
74
+ demo.launch()